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ABSTRACT

Over the past five years, artificial intelligence (AI) has evolved from a specialized tech-

nology confined to large corporations and research labs into a pervasive tool integrated

into everyday life. While AI extends its reach beyond niche domains to individual users

across diverse contexts, the widespread adoption has given rise to new needs for machine

learning (ML) systems to balance user-centric experiences—such as real-time responsive-

ness, accessibility, and personalization—with system efficiency, including operational cost

and resource utilization. However, designing such systems is complex due to diverse AI

workloads—spanning conversational services, collaborative learning (CL), and large-scale

training—as well as heterogeneous computing resources, ranging from cloud data centers to

resource-constrained edge devices.

My research aims to address these challenges and achieves these dual objectives through

a set of design principles centered on server-client co-designed resource schedulers. These

principles emphasize:

• User-Centricity: Our system design centers around the end user’s needs, delivering

user-friendly, affordable, and personalized AI services while also preserving user privacy.

• Workload-Aware ML System Design: The system is tailored to the unique de-

mands of various AI workloads and computing environments, optimizing their special-

ized scheduling objectives.

• Server-Client Collaboration: Our system design leverages a server-client co-design

paradigm, enabling collaborative efforts between both sides to make more informative

scheduling decisions so as to enhance both user experience and server-side efficiency.

Our contributions are threefold. First, we propose Andes to address the critical need for

real-time responsiveness in LLM-backed conversational AI services by introducing the con-

cept of Quality-of-Experience (QoE). It proposes a co-designed solution including a server-

side token-level request scheduling algorithm that dynamically prioritizes token generation

based on user-centric QoE metrics, and a client-side token buffer to smooth the token stream-

ing experience. This approach significantly enhances user experience during peak demand

and achieves substantial GPU resource savings.
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Second, we propose Auxo to deliver better personalized AI services in CL, addressing

statistical data heterogeneity and resource constraints of end users. It introduces a scalable

client-clustering mechanism that groups users into cohorts with lower intra-cohort hetero-

geneity, minimizing the impact of data heterogeneity on model performance. Furthermore,

Auxo incorporates a cohort affinity mechanism, allowing clients to join preferred clusters

while maintaining user privacy. This approach improves the personalized model performance

and training efficiency in real-world CL scenarios.

Third, with the increasing demand for CL jobs, we propose Venn to efficiently share

heterogeneous edge resources in multi-job CL environments. It designs a resource scheduler

that proactively resolves complex resource contention to accelerate job completion times. It

features a job offer abstraction that enables client resources to identify eligible jobs based

on their local capabilities without exposing sensitive information. This significantly reduces

job completion times and improves resource efficiency for CL jobs.

In conclusion, this thesis contributes to the field of machine learning systems by addressing

critical challenges in making AI more user-centric and efficient. Guided by the principles

of user-centricity, workload-aware design, and server-client co-design, this dissertation offers

practical solutions to the complexities of diverse AI workloads and heterogeneous computing

resources. As the field progresses, these insights will guide the development of a more

connected, efficient, and human-centered AI ecosystem.
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CHAPTER 1

Introduction

1.1 AI Extending Its Reach to Everyone

Five years ago, artificial intelligence (AI) was largely limited to niche domains like image

recognition and recommendation systems, primarily utilized by large corporations or research

labs [107, 14]. Throughout my doctoral research, we have observed AI’s rapid evolution into

a technology that now seamlessly integrates into individuals’ everyday life and professional

workplace [46]. This shift, propelled by advancements in generative AI models like Chat-

GPT—which boasted over 400 million weekly active users by early 2025 [82, 117]—has

extended AI’s reach beyond exclusive, resource-rich corporations to individual users across

diverse contexts [43].

Today, AI supports a wide range of tasks—assisting essay writing for students, acceler-

ating coding tasks for developers [74], helping generate images based on text for design-

ers [134]—delivering benefits to a broad population. As AI continues to embed itself into

every corner of the world, its presence in daily life and diverse sectors will become as com-

monplace as essential utilities like water, electricity, and the internet. This trend of de-

mocratizing AI reveals critical needs in machine learning (ML) system design to balance

user-centric experiences [145, 140] with server-side efficiency:

1. User-Centric Experience: To ensure AI benefits and satisfies everyone, ML sys-

tems must be designed to deliver AI services that are user-friendly, affordable, and

personalized, while preserving users’ privacy [3].

2. System Efficiency: The growing number of AI use cases and users increases pressure

on computational infrastructure and operational costs [104]. This efficiency is vital to

delivering AI to a broader audience, because it enables providers to scale various AI

services without escalating expenses and maintain performance under resource con-

straints. To ensure the efficient delivery of AI services to this expanding demand, ML
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systems should be designed to maximize computational efficiency, minimize operational

costs, and sustain reliable service even under peak usage conditions.

1.2 System Challenges Towards Pervasive AI

However, as AI become more pervasive, they encounter substantial system-level challenges

that must be addressed to pave the way for truly democratized and efficient AI. These

challenges stem from the inherent diversity and heterogeneity of the new AI landscape.

1. Diversity of AI Workloads: The first primary challenge arises from the diver-

sity of AI workloads [65], which span applications such as conversational AI services,

experimental model training, on-device collaborative learning, and agentic AI. These

workloads differ in goals and resource requirements: ranging from maximizing Quality-

of-Experience for real-time user interactions [98], minimizing training job makespan for

rapid experimentation [173], improving the model accuracy for collaborative learning

applications, to reducing average job completion time for multi-collaborative learning

job efficiency [97].

2. Heterogeneity of Resources: Another substantial challenge arises from the het-

erogeneous nature of computation resources. As AI becomes integral to the average

person’s daily tasks, these pervasive AI workloads increasingly rely on diverse hard-

ware resources, ranging from powerful GPU clusters in cloud datacenters to resource-

constrained edge devices like smartphones and personal computers [65]. Such resource

heterogeneity manifests as significant disparities in computational capacity, available

memory, network latency, and device availability, requiring dedicated scheduling ap-

proaches. Furthermore, end-user data, as another valuable resource to ML model

performance, varies considerably in terms of distribution and quality [57, 96], adding

another layer of complexity.

The workload diversity and resource heterogeneity require specialized system design along

with dedicated resource management strategies to achieve better system efficiency.

1.3 Efficient and User-Centric ML Systems

In this dissertation, we argue that rather than simply squeezing efficiency, we aim to develop

ML systems through sophisticated resource management with the objectives of enhancing
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both end-user experience and server-side efficiency. Our solutions are informed by a com-

prehensive understanding of AI workloads—encompassing job-specific requirements and the

intrinsic characteristics of available resources. Moreover, our solutions leverage a server-

client co-design paradigm, enabling collaborative efforts from both sides to achieve these

dual objectives. This approach is exemplified across three key contributions, each address-

ing distinct challenges while collectively advancing the broader vision of building ML systems

towards pervasive AI.

Enhancing Real-Time User Experiences in Conversational AI Services: Conver-

sational AI services powered by large language models (LLMs) have rapidly emerged as a

primary and intuitive interface for individuals to interact with AI, through text or audio

interfaces, acting as a key catalyst for AI’s integration into everyday life. As an important

step towards realizing pervasive AI, these conversational AI services must maintain real-time

responsiveness and smooth token generation to sustain user engagement and satisfaction.

However, existing LLM serving systems predominantly focus on traditional system-centric

metrics such as throughput or latency, often neglecting direct user experience. This over-

sight leads to unpredictable token delivery delays and user dissatisfaction, particularly during

bursty request arrivals at peak times. Moreover, to mitigate such delays, service providers

often need to overprovision resources, inflating server-side costs and limiting affordability

and equitable access for a broader user base.

To address this, we are the first to introduce the concept of Quality-of-Experience (QoE)

explicitly tailored to AI conversational services [98]. Our solution features a token-level

scheduling algorithm on the server side that dynamically prioritizes token generation based

on user-centric QoE metrics, pinpointing the unique bottlenecks in LLM serving workflows.

Additionally, we co-design a token buffer on the client side to smooth token streaming, further

enhancing perceived responsiveness. Our extensive evaluations demonstrate significant QoE

improvements, including up to a 4.7× enhancement in user experience during bursty request

periods, alongside substantial GPU resource savings of up to 61%, ensuring efficient and

equitable access to conversational AI.

Empowering Diverse End Users via Cohort-Based Collaborative Learning: Per-

sonalized AI models are vital for serving a global, diverse population. However, the inherent

heterogeneity of user data across edge resources pose significant challenges to delivering ef-

fective personalization. Centralized ML model training approaches are impractical due to

privacy concerns and high data-transfer costs, making collaborative learning (CL) paradigms,

such as federated learning, a promising alternative for training personalized models without
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compromising user data. To overcome the data heterogeneity challenges, some CL solutions

try to find similar user groups and train the model; however, they often make unrealistic

assumptions of full device availability and unlimited computational resources, which have

limited practical applicability.

We propose a cohort-based CL framework, Auxo [96], that addresses these challenges

through a scalable client-clustering mechanism that adaptively groups statistically similar

clients into cohorts, while explicitly accounting for real-world edge resource characteristics

like limited availability and constrained computational resources. Moreover, we co-design

a cohort affinity mechanism, which enables clients to join their preferred cohorts, which

empowers the stateless coordinator to efficiently match clients to appropriate groups while

preserving privacy through minimal data disclosure. With reduced intra-cohort data hetero-

geneity, our approach accelerates convergence and improves the performance of personalized

models. This solution advances pervasive AI by making CL models more personalized and

performant on diverse populations. Our results show significant improvements, including

2.1%-8.2% increases in final accuracy, up to 2.2× faster convergence, and reductions in accu-

racy bias (4.8%-53.8%), thereby making personalized CL practical and equitable for diverse

user populations.

Optimizing Resource Sharing in Multi-Job Collaborative Learning Environ-

ments: With AI democratization driving an increasing number of CL jobs, the demand

for efficiently sharing limited resources—such as edge devices—is becoming increasingly crit-

ical. However, running multiple CL training or inference jobs simultaneously often results in

complex resource contention, where jobs compete for the same set of edge resources based on

their specific requirements, directly delaying job completion times and degrading resource

efficiency. Current resource management approaches typically treat each CL job in isolation,

assuming edge resources are abundant. Moreoever, for resource management approaches that

account for multiple CL, they fail to capture the complex contention patterns due to the

diverse resource requirements among CL jobs—such as varying objectives, data availability,

hardware, and software needs. This complex resource contention pattern can be visualized

as overlapping circles in a Venn diagram, where the eligible resources for each job are limited

and may intersect, be contained within, or encompass those of other jobs. Consequently,

this leads to suboptimal resource utilization and prolonged job completion times.

We introduce an efficient resource scheduler, Venn [97], that coordinates across multiple

concurrent CL jobs, systematically capturing these contention patterns and strategically

allocating resources to minimize the average scheduling delay and response collection time.

On the end-user side, we propose a job offer abstraction, whereby the scheduler presents
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available jobs along with their requirements, enabling users’ devices to identify eligible jobs

based on their local resource information, therefore addressing edge resource uncertainty

and preserving privacy through controlled information disclosure. By proactively resolving

resource contention, our approach significantly reduces average job completion time by up to

2.25× compared to state-of-the-art baselines, effectively supporting larger-scale concurrent

CL scenarios. Venn advances pervasive AI by enabling more efficient and scalable resource

sharing, allowing a broader range of users and organizations to participate in CL with better

resource efficiency.

1.4 Dissertation Plan

The remainder of this dissertation is organized as follows:

• Chapter 1 provides an overview of AI’s expanding reach trends and key system chal-

lenges that need to be addressed.

• Chapter 2 introduces Andes, a Quality-of-Experience (QoE) aware LLM serving sys-

tem. We define a novel QoE metric for AI conversational services, along with a token-

level scheduling algorithm that optimizes user experience while reducing GPU resource

usage.

• Chapter 3 presents Auxo, a cohort-based collaborative learning system that enables

personalized AI model training across diverse edge devices. We detail our adaptive

client clustering mechanism and cohort affinity approach that addresses real-world

challenges of data heterogeneity and resource constraints.

• Chapter 4 describes Venn, a resource scheduler for multi-job collaborative learning

environments. We introduce our job offer abstraction and contention-aware scheduling

algorithm that efficiently manages shared resources across concurrent collaborative

learning jobs.

• Chapter 5 concludes the dissertation by summarizing my perspectives on AI trends

and lessons learned for ML system design, discussing the impact of the presented

research, and outlining promising directions for future work.
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CHAPTER 2

Quality of Experience in Conversational AI

Services

Large language models (LLMs) are at the core of conversational AI services, such as chatbots,

which provide live user interaction by incrementally streaming text or audio. While such

services are user-centric by nature, we find that existing LLM serving systems are primarily

optimized for server-centric metrics like token generation throughput, failing to deliver a

good user experience.

The goal of this paper is to design an LLM serving system for conversational AI services

that can satisfy more concurrent user requests without additional GPU resources. First,

in order to quantify user experience, we introduce a mathematical definition of Quality-of-

Experience (QoE) that considers each user’s end-to-end interaction timeline. Based on this,

we propose Andes, an LLM serving system that combines a server-side token-level preemptive

scheduler that dynamically prioritizes requests based on their expected QoE gain and GPU

resource usage, and a client-side token pacer that delivers tokens to users at a smooth,

digestible pace. Compared to state-of-the-art LLM serving systems, Andes can serve up to

1.74× more requests under bursts with the same GPU resource while achieving comparable

or higher QoE.

2.1 Introduction

Large language models (LLMs) [152, 27, 176, 40, 70, 12, 8, 149] have revolutionized many

user-facing online applications. Particularly, conversational AI has emerged as a dominant

use case, driving over 60% of LLM-backed applications [52], including chatbots, virtual

assistants, language translation, and customer support. The meteoric rise of ChatGPT [115],

now with over 400 million weekly active users [62], underscores the massive scale and demand

for such services.
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without affecting User 1’s token consumption.

Figure 2.1: Timelines for token generation, delivery, and user consumption for (a) existing
and (b) QoE-aware LLM serving systems, both with capacity 1. Users consume tokens at
their reading speed.

Conversational AI services provide interactive conversations between the user and autore-

gressive LLMs that generate text tokens1 one by one. Generated tokens are incrementally

streamed to and consumed by users – as written text or synthesized speech – to provide

a conversational experience. This interactivity makes conversational AI services inherently

user-centric, prioritizing user experience as a key optimization goal. Particularly, user expe-

rience for conversational AI hinges on mainly (1) the timely delivery of initial tokens, and

(2) consistent delivery of subsequent tokens at a smooth and digestible pace (§2.2.1).

Existing LLM serving systems [172, 83, 183, 11, 160], however, often prioritize throughput

over user experience, leading to suboptimal initial and subsequent token delivery (§2.2.2).

Particularly during periods of request and/or prompt token load surge, simplistic first-come-

first-served (FCFS) scheduling policies adopted by existing systems cause head-of-line block-

ing. This inflates the user’s initial wait time or time-to-first-token (TTFT), as shown in

Figure 2.1a.

However, opportunity lies in the observation that existing systems generate tokens at a

pace that significantly exceeds the typical user’s reading or listening speed, which does not

further improve user experience because the token consumption speed of users is capped

at their reading speed (for text) or listening speed (for speech). This allows the server to

control the generation and delivery of each token in each request to ensure a smooth and

digestible pace, which not only enhances user experience but also creates opportunities to

serve more users simultaneously with the same amount of hardware resource (§2.2.3). As

shown in Figure 2.1b, we can redistribute computation resources across requests over time

1LLMs process and generate text in units of tokens. For instance, the word “streaming” may be broken
down into two tokens: “stream” and “ing.”
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at token granularity to improve TTFT without affecting the token consumption timeline of

other users.

Existing LLM serving systems have so far failed to recognize this opportunity because

there is a fundamental misalignment between user experience and optimization metrics used

by existing systems. Server-centric metrics (e.g., token generation throughput [172, 83]) or

simple statistics derived from a subset of token delivery timestamps (e.g., average/P90/P99

time-per-output-token or TTFT [183, 11, 160]) fail to fully capture user experience during

the whole interactive session. To accurately reflect user experience, it is vital to consider the

user’s end-to-end interaction timeline.

To capture this timeline effectively, we propose a mathematical definition of Quality-

of-Experience (QoE) that can be used as an optimization objective for conversational AI

services (§2.3.1). This is challenging in itself, as it needs to capture the user’s end-to-end

interaction timeline and reflect our intuitions of good and bad user experiences. For instance,

long pauses before and during token delivery should degrade the right amount of QoE, while

generating tokens faster than the user’s consumption speed should not improve QoE.

To align system objectives with QoE, we design Andes, an LLM serving system for con-

versational AI services. Andes co-designs the LLM inference server and the user-side client

(§2.3.2). On the server side, Andes adopts a preemptive request scheduler that operates at

the token granularity to optimize QoE (§2.4). Designing such a scheduler is challenging:

(a) Diverse and unpredictable resource demand. Requests have varying prompt

lengths, response lengths, and QoE parameters (e.g., user reading speed). This dynamism

and diversity preclude the adoption of simple one-size-fits-all scheduling policies.

(b) Interdependent user experience objectives. On the one hand, we want to minimize

the initial waiting time for users by serving more requests in parallel that maximizes GPU

memory utilization. On the other hand, serving with a larger batch size may slow down

the generation of individual tokens, potentially failing to meet user’s ideal token delivery

speed. With request input lengths and QoE parameters varying widely over time, this is

critical but challenging to control.

(c) Token-level preemption overhead. While token-level request preemption is promis-

ing for QoE optimization (Figure 2.1), such fine-grained scheduling introduces additional

overhead that may degrade system throughput. This may in turn degrade the QoE of

every request.

To handle these challenges, Andes continuously monitors the attained QoE and com-

pute/memory usage of each request to dynamically prioritize requests that are at risk of

degrading their QoE. Moreover, Andes modulates the frequency of decision-making and in-

corporates the overhead of request preemption and restart in its scheduling decision.
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Age group Reading speed

18-24 (28.0%) 236 WPM
25-44 (51.9%) 200 WPM
45-54 (11.2%) 192 WPM
55-64 (5.6%) 185 WPM
65+ (3.3%) 175 WPM

Table 2.1: Reading speed by age
group [28].

Language Speaking speed

English (79.3%) 150 WPM
Chinese (7.0%) 158 WPM
Korean (6.9%) 150 WPM
French (3.6%) 195 WPM
Spanish (3.2%) 218 WPM

Table 2.2: Speaking speed by lan-
guage [119, 19].

Andes’s server implements push-based streaming, which transmits tokens to the client

as soon as they are generated. This is because the server is typically resource-constrained,

and generated tokens are delivered exclusively to the user who submitted the request. To

provide a smooth streaming experience at a consistent pace, Andes’s server works with the

client-side token pacer, which temporarily buffers tokens generated by the server and delivers

them to the user precisely at the user’s consumption speed (§2.5).

We evaluate Andes with LLMs with various sizes (3.8B to 70B) and architectures (Dense

and Mixture-of-Experts, Multi-Head Attention and Grouped-Query Attention) on three dif-

ferent request datasets with varying input and output sequence lengths (§4.5). We also

evaluate Andes in the context of both text-based and audio-based conversational AI services.

Compared with state-of-the-art LLM serving systems (vLLM [83] and Sarathi-Serve [11]),

given the same amount of GPU resource, Andes serves up to 1.74× more requests under

bursts while maintaining the same high QoE, reduces average TTFT by up to 4.8×, and

lowers silence time ratio in text-to-speech (TTS) playback by up to 3.3× for audio-based

conversational AI services.

Overall, we make the following contributions:

• We identify a misalignment between the user experience of conversational AI services and

optimization metrics pursued by state-of-the-art LLM serving systems.

• We propose a formal definition of QoE for conversational AI services that captures their

user experience.

• We design and implement Andes, an LLM serving system that co-designs the server

(token-level preemptive request scheduler) and the client (token pacer).

• We evaluate Andes on diverse workloads and show that it significantly improves QoE

and serving capacity.
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2.2 Background and Motivation

In this section, we first introduce conversational AI services and their user experience (§2.2.1).

We then discuss the limitations of existing LLM serving systems (§2.2.2) and opportunities

for improving user experience (§2.2.3).

2.2.1 Conversational AI Services and User Experience

Conversational AI services including chatbots, virtual assistants, and real-time translation

aim to provide a smooth conversational experience by incrementally streaming text to users,

either in visual text or audible synthesized speech, instead of having them wait for tens of

seconds before the whole response is generated.

The user’s interaction timeline with such conversational AI services can be divided into

(1) the initial waiting phase and (2) the token consumption phase. During the former phase,

time-to-first-token (TTFT) matters; the first token should be delivered to users before they

lose patience. The target TTFT should depend on the service, be it constant or proportional

to the prompt length. During the latter phase, the server’s token delivery speed (TDS) should

match the users’ consumption speed (Tables 2.1 and 2.2). More specifically, a slower TDS

hurts user experience as users will perceive the service as slow or lagging, but a TDS faster

than the user’s consumption speed does not improve user experience.

2.2.2 Existing Systems Provide Poor User Experience

Existing LLM serving systems [172, 83, 183, 11] fail to deliver good user experience for con-

versational AI services. To gain deeper insight into how existing LLM serving systems behave

with real-world conversational AI services, we replay a one-hour slice of BurstGPT [157], a

real-world LLM serving request trace, with vLLM [83] serving Phi-3.5-MoE 16×3.8B [8] on

8 × A100 GPUs. Figure 2.2 (first row) shows vLLM’s GPU memory utilization and the

number of running and waiting requests over time. Above all, we can observe large and

frequent load surges caused by spikes in both request rate (second row) and the number of

tokens in requests (third row). During surge periods, vLLM’s first-come-first-served (FCFS)

scheduling policy – adopted by most existing LLM serving systems as well – causes significant

head-of-line blocking and queuing delay. This leads to an average TTFT of 10.4 seconds,

which is likely beyond the patience limit of most users [13]. Conversely, vLLM’s average

TDS of 11.2 tokens/s far exceeds typical user consumption speeds (Tables 2.1 and 2.2). De-

livering tokens faster than users can consume them does not improve user experience, as

user’s consumption timeline remains unchanged.
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Figure 2.2: vLLM serving requests from BurstGPT. During load surges, vLLM builds up
a very long queue due to head-of-line blocking. Still, under normal load, GPU memory is
underutilized.

To understand this further under varying degrees of load surges, we create synthetic 20-

minute request traces that contain a load surge period with varying durations of bursts (See

Section 2.6.3 for more details). Figures 2.3a and 2.3b show the average TTFT and average

TDS of vLLM serving Phi-3.5-MoE 16×3.8B, respectively. Consistent with the BurstGPT

trace, we observe: (1) TTFT is significantly inflated due to head-of-line blocking, even

under moderate load surges, and (2) TDS consistently exceeds any reasonable user token

consumption speed, even under severe load surges.

2.2.3 Opportunities for Improving User Experience

In essence, Section 2.2.2 reveals a misallocation of computational resources over time –

instead of continuing to allocate compute to requests that have generated enough tokens for

their users to consume, it makes more sense to redistribute compute to requests that have not

generated enough (or, any) tokens for their users. This motivates a preemptive scheduling

approach that can reduce TTFT inflation caused by head-of-line blocking. Because we know

each user’s speed – and thus timeline – of token consumption, we can preempt requests that

have generated sufficient tokens and keep preemption transparent to user experience.

How much is the potential gain under ideal circumstances? Opportunity fundamentally

comes from the gap between the server’s excessive token generation speed and the user’s
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Figure 2.3: vLLM’s average TTFT and TDS while varying the duration of the load surge in
our 20-minute trace. TTFT target is set to 1.3 s, as recommended by Google for web page
loading [13]. User reading/listening speeds are 4.8 and 3.3 tokens/s, derived from Tables 2.1
and 2.2. TTFT is inflated significantly, whereas TDS remains excessively fast compared to
any token consumption speed.

token consumption speed. Instead of serving the same set of requests to completion and

over-generating tokens for them, an ideal preemptive scheduler could switch to different

requests back and forth while ensuring that each request generates tokens at a rate that

matches the user’s consumption speed. For instance, for the workload in Figure 2.3, the

server generates 11 tokens/s under moderate load surges (with burst duration 10 minutes),

while the user can only consume 4.8 tokens/s. Therefore, each request just needs to be

served for 1 second every 11/4.8 = 2.3 seconds, allowing the server to serve 2.3× more

requests concurrently. This is an ideal upper limit estimation assuming no scheduling,

prefill, preemption, and resumption overhead, but we show in Section 4.5 that Andes can

still realize a significant portion of the ideal gains.

2.3 Andes Overview

Andes is an LLM serving system for conversational AI services that enhances user expe-

rience by co-designing the server and the client. We first present a definition of Quality-

of-Experience (QoE) for conversational AI (§2.3.1), which acts as Andes’s optimization ob-

jective. Thereafter, we provide an overview of Andes’s architecture and request lifecycle

(§2.3.2).
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Figure 2.4: User experience examples. Users expect tokens to be delivered along the fixed
Ideal Consumption Timeline, with its slope being their reading/listening speed. (a) Without
any Token Delivery Delays, users’ Actual Consumption Timeline aligns with their Ideal
Consumption Timeline. (b, c, d) However, when tokens are delayed, users perceive the delay
and user experience degrades.

2.3.1 Quality-of-Experience in Conversational AI

Existing LLM systems are inefficient in resource usage for conversational AI services (§4.2.3).

This is because widely used system optimization metrics fail to fully capture user experience

by only considering a limited portion of the user’s token consumption timeline. Server-centric

metrics like token generation throughput ignore the token delivery timeline of individual re-

quests. TTFT only captures the user’s consumption of the first token, and average/P90/P99

time-per-output-token (TPOT) can miss outlier TPOT inflations that lead to user-perceived

pauses during interaction.

As such, we need a unified QoE metric that fully captures user experience in conversational

AI services. Figure 2.4 shows four foundational cases that guide the design of QoE. The Ideal

Consumption Timeline represents the user’s ideal experience, with low TTFT and every

subsequent token being delivered precisely at the user’s token consumption speed.

1. Figure 2.4a (Perfect experience): The server delivered every token no later than

the user’s expectation, allowing users to consume them following the ideal timeline.

Delivering tokens earlier than the ideal timeline does not improve user experience, as
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users cannot consume them faster.

2. Figure 2.4b (Long initial delay): The request stayed in the server’s queue for a long time

due to head-of-line blocking. As a result, the user experienced a long initial wait time,

followed by subsequent tokens delivered at the user’s reading speed.

3. Figure 2.4c (Slow token delivery speed): When the server processes a larger batch of

requests, its token generation latency increases, potentially failing to meet the user’s

ideal token consumption speed. In this case, the first token was delivered on time, but

the user experienced delays in every subsequent token.

4. Figure 2.4d (Pause during token delivery): The server preempted the request to avoid

OOM errors, pausing token delivery in the middle. When the Actual Delivery Timeline

crosses the Ideal Consumption Timeline, the user runs out of tokens to read and

experiences a pause. This case is particularly insidious, as TTFT or average TPOT does

not degrade; both the first and last tokens were delivered on time, hiding the long pause

in the middle.

As can be seen above, we can gauge user experience (and the degradation thereof) based

on how much the user’s Actual Consumption Timeline (TActual) deviated from the Ideal

Consumption Timeline (T Ideal). Thus, we define:

Sdelay =
n∑
i=1

(
TActual
i − T Ideal

i

)
, (2.1)

where TActual
i and T Ideal

i respectively denote token i’s actual and ideal consumption times-

tamp, and n is the total number of tokens consumed by the user. Sdelay measures how

much the Actual Consumption Timeline deviated from the Ideal Consumption Timeline

(gray shaded area in Figure 2.4), and properly reflects the delay of earlier tokens creating

cascading delays in later tokens. However, as more tokens are generated for the request,

user experience degradation from earlier delays ought to be diluted. Thus, we introduce a

normalizer:

Swhole =
n∑
i=1

(
TActual
n − T Ideal

i

)
. (2.2)

Swhole covers Sdelay and the area below the Actual Consumption Timeline, always being larger

than Sdelay. With this, our QoE definition is:

QoE = 1− Sdelay

Swhole

. (2.3)

With no token delay at all, Sdelay will be zero, leading to a perfect QoE of 1. On the other
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Figure 2.5: High-level architecture of Andes. Components designed by Andes are colored in
orange.

hand, when tokens are delayed, Sdelay will take up a larger proportion inside Swhole, reducing

the value of QoE. Finally, when no tokens arrive, Sdelay will equal Swhole, leading to the worst

possible QoE of 0.

QoE can be computed on requests in any state, be it queued, running, or finished. The

optimization objective of Andes is to maximize QoE across all requests.

2.3.2 Andes Architecture

System Components. Andes co-designs the LLM inference server and the client. Fig-

ure 2.5 shows the high-level architecture of Andes. On the server side, the Request Tracker

maintains the control state of each request, including its QoE parameters (TTFT target and

user token consumption speed), prompt and partial response, timestamps of each gener-

ated token, and resource usage. Based on this information, the Token-Level Request

Scheduler (§2.4) makes runtime decisions on which requests to admit/resume or preempt.

Such decisions are carried out by the data plane (Executor and KV Cache), which is also

responsible for running LLM inference and generating tokens. The server implements push-

based streaming, and the client-side Token Pacer (§2.5) smooths out the pace of incoming

tokens by temporarily buffering tokens and delivering them to the user at their consumption

speed. The server is fully aware of the Token Pacer, and will generate and push just enough

tokens so that the Token Pacer does not run out of tokens to deliver.
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Request Lifecycle. First, a request is 1 submitted through the application-integrated

client, and the client also informs the Token Pacer of the user’s QoE parameters.2 The

request is then enqueued into the server, and the Request Tracker initializes and continuously

tracks the request’s status. During its lifetime, the request can either be waiting (enqueued

or preempted) or running. 2 When the Token-Level Request Scheduler decides to preempt

a running request, it will transition into the waiting state after saving its intermediate state.

On the other hand, a waiting request begins running when the scheduler decides to either

newly admit or resume it, restoring its intermediate state if any. When a request is running,

3 the Executor generates tokens and 4 pushes them immediately to its corresponding user’s

Token Pacer. Regardless of the request’s state in the server, the Token Pacer 5 drains

buffered tokens and delivers tokens to users following their Ideal Consumption Timeline.

2.4 QoE-Aware Token-Level Scheduler

We can now dive into how Andes optimizes the QoE of conversational AI services by per-

forming token-level preemptive request scheduling. We start by formulating the scheduling

problem assuming that there is no preemption overhead (§2.4.1), as the overhead itself de-

pends on the scheduling decisions dictated by the scheduling policy. We then propose an

efficient scheduling algorithm for the problem (§2.4.2) and refine the solution to incorporate

preemption overhead (§2.4.3).

2.4.1 Problem Formulation

We first discuss the objective and constraints of Andes, and then put them together to

formulate the scheduling problem.

Scheduling Setup and Objective. Andes’s scheduler operates in an online setting where

user requests arrive over time with diverse input lengths and QoE parameters. Its objective

is to maximize the average QoE across all requests.3

Like any other online serving system, it is very difficult, if not impossible, to perfectly

plan execution into the future because the arrival time, input and output lengths, and QoE

parameters of each request are not known in advance. Instead, among ongoing (waiting and

2QoE parameters may be derived from service-level objectives (SLOs) defining target TTFT and TDS
for the application, personalized user settings based on individual reading or listening speeds (e.g., from
Tables 2.1 and 2.2), or pricing tiers (e.g., more expensive tokens guarantee higher delivery speed).

3Alternative objectives can also be used. See Appendix A.1.
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running) requests, Andes decides which requests to serve at the beginning of each scheduling

quantum. Based on this decision, requests are admitted/resumed and preempted as needed.

Andes decides whether or not to serve a request based on the QoE gain it is expected to

bring when it is served compared to when it is not served, calculated as:

Qserve,i −Qwait,i (2.4)

where Qserve,i and Qwait,i are request i’s QoE when it is served and not served, respectively.

As we are uncertain about whether a request will be continued to be served or preempted

in the future, we estimate the QoE gain of a request in the upcoming time frame of length

∆t. We will shortly go into more depth into how this estimation is done, and evaluate the

impact of ∆t in Section 4.5.5.

Resource Constraints. LLM serving systems are bottlenecked primarily by two GPU

resources: memory and compute. These impose constraints on which requests can be con-

currently served by the system.

First, each token in a request’s context (input and output tokens) consumes one entry

in the LLM serving system’s KV cache [27]. As GPU memory is limited, there is a limit

on the number of KV cache entries the GPU can hold with model weights and intermediate

tensors. The total KV cache size of requests that are served must not cross this upper limit.

In addition to memory constraints, Andes must also consider compute constraints, which

affects the computation latency of token generation by the executor; a larger batch size gen-

erally increases computation latency. 4 Thus, while a large batch size B serves more requests

concurrently, it will also increase the latency to generate one token from the perspective of

each request. This may lead to individual requests generating tokens too slowly and degrad-

ing QoE. On the other hand, a smaller batch size would lead to faster token generation,

but the server is serving fewer requests, potentially degrading the QoE of those that are left

waiting.

As such, determining the right batch size B is critical in maintaining the right token

generation speed for requests, which in turn affects the QoE of serving each request. There-

fore, in estimating the QoE gain of each request in the scheduling objective, Andes takes

batch size B into account. Figure 2.6 provides an example of this. When batch size is small

(B = 10), tokens are generated quickly and the request maintains perfect QoE. However, as

B increases (B = 30 and B = 50), token generation slows down due to higher computation

4More precisely, token generation latency depends on the batch size and total number of tokens, but
batch size and total number of tokens are nearly correlated (Appendix A.2), allowing us to eliminate the
number of tokens.
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Figure 2.6: Visualization of Qserve,i(B) and Qwait,i. The former depends on batch size B
whereas the latter is a constant. With batch size 50, request i no longer has perfect QoE.

load, and perfect QoE will be broken in the case of B = 50. On the other hand, when the

request is not served and waiting, it does not generate any tokens and therefore batch size

does not affect its QoE.

Problem Formulation. Putting these together, we have the following scheduling problem:

max
x

N∑
i=1

(Qserve,i(B)−Qwait,i) · xi

s.t. xi ∈ {0, 1}, i ∈ 1, . . . , N

N∑
i=1

xi = B

N∑
i=1

lixi ≤M

(2.5)

where N is the total number of ongoing requests, and for request i, li is its context length,

and xi equals 1 if the request will be served and 0 if not. The objective has been updated

so that QoE gain properly depends on batch size B. The second constraint enforces that

batch size should be exactly B, and the third ensures that the total context length in the

batch does not exceed the GPU’s memory. Notice that batch size B is treated as a given;

the optimization problem in Equation 2.5 has to be solved for ∀B ∈ [1, N ] and the x that

leads to the largest optimum across ∀B is the optimal solution.
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Given the problem formulation, we observe that it resembles that of the classic knapsack

problem [76]. The goal is to select items (requests) to put in a knapsack (inference server)

so that total item value (QoE gain) is maximized and total weight (context length) does not

exceed the knapsack’s capacity (memory capacity). Yet, the fact that the item value of each

item (QoE gain) depends on how many items end up in the knapsack (batch size) makes it

a harder variant.

Problem Hardness. The problem in Equation 2.5 is weakly NP-Hard [76]. 3D dynamic

programming (DP) can solve the problem optimally in pseudo-polynomial time O(MN2)

(See Appendix A.3), which is likely too slow as the number of requests N and the maximum

number of tokens that can fit in memory M are easily in the order of hundreds and thousands,

respectively. Furthermore, Equation 2.5 has to be solved for ∀B ∈ [1, N ], which is clearly

intractable.

2.4.2 Priority-Based QoE-Aware Scheduling

It is computationally prohibitive to solve the problem in Equation 2.5 as is, particularly

when the scheduler is normally invoked before every token generation iteration. Therefore,

we propose an approximate but efficient solution.

Walkthrough. We propose a priority-based greedy heuristic that approximates the solu-

tion to the knapsack problem. The algorithm assigns a priority to each request based on its

potential QoE gain relative to its resource usage. Intuitively, requests that require less GPU

resource but still bring large QoE gain should be favored, allowing the system maximize

average QoE under resource constraints.

We illustrate the scheduling process with a toy example to demonstrate the system’s

behavior as in Figure 2.7, along with the token delivery process of one request R1 (bottom

row). At t = 0, three requests R1, R2, and R3 with different GPU memory demands –

represented by the number of tokens in the prompt – arrive and start running. Even at

t = 0, request R1 is assigned a lower priority than R2 and R3 because it has a longer context

length and thus consumes more GPU resources. All three requests generate one token per

iteration, as also reflected by request R1’s token timeline. At t = 3, two new requests R4 and

R5 arrive. However, the executor is fully occupied, so the scheduler needs to decide which

requests to preempt and which requests to admit. At the moment, R1 has the lowest priority

because (1) it has accumulated enough tokens for the user to consume, leading to a lower

potential QoE gain, and (2) it consumes the most amount of GPU memory. Therefore, the

scheduler preempts R1 temporarily and admits R4 and R5. Even after R1 gets preempted,
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Figure 2.7: Andes’s token-level preemptive request scheduler in action. The priority of each
request changes over time, as indicated by colors. Scheduling decisions are made based on
this dynamic priority and the amount of available GPU resources.

its Actual Delivery Timeline curve is still above the Ideal Consumption Timeline, meaning

the user will not experience any pause. At t = 6, the Actual Delivery Timeline of R1 is

about to drop below the Ideal Consumption Timeline, so the scheduler preempts R3 with

the lowest priority and resumes R1. This allows R1 to resume token generation, ensuring the

user continues to receive tokens without experiencing any pause.

Priority-Based Greedy Packing. Based on this intuition, we define request i’s priority

as:
Qserve,i(B)−Qwait,i

li
. (2.6)

This priority function meets our design goals:

• Requests with higher QoE gain and lower GPU resource usage will be prioritized.

• Requests with long context length (li) are preempted first, freeing ample GPU memory
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Algorithm 1 Priority-based greedy packing for Equation 2.5

Inputs: Number of requests N , memory capacity M , request context length array l[N ],
request QoE gain array q[N ], and target batch size B.
Output: Scheduling decision array x[N ].

1 for all i ∈ [1, N ] do
2 p[i]← q[i]/l[i] . Set priority of request i

3 Mcurrent ← Ncurrent ← 0
4 Initialize solution array x[N ] with all zeros
5 for all i ∈ [1, N ] in descending order of p[i] do
6 if Mcurrent + l[i] ≤M and Ncurrent + 1 ≤ B then
7 x[i]← 1 . Serve request i
8 Mcurrent ←Mcurrent + l[i]
9 Ncurrent ← Ncurrent + 1

10 else
11 break
12 return x

to potentially bring in more than one waiting requests.5 This reduces the number of

preemptions required to alleviate head-of-line blocking.

• As a request receives service, its context length (li) will increase, automatically deprior-

itizing itself. On the other hand, the QoE gain of requests will increase the longer they

wait, automatically prioritizing itself. Both aspects contribute to preventing starvation.

The scheduling algorithm executed at every scheduling quantum for each batch size B is

given in Algorithm 1. In essence, the algorithm sorts requests in descending order of priority

and decides to serve the request until the memory capacity or the batch size is reached. The

greedy packing algorithm provides an efficient time complexity of O(N logN). On top of

this, we apply two optimizations that reduce the number of times the scheduling algorithm

must be invoked.

Selective Triggering. As QoE is only affected when the system is under load surge,

it is not necessary to solve the knapsack problem otherwise. Therefore, we can selectively

trigger Algorithm 1 only when we detect that the system is under resource pressure (memory

capacity or compute). For the former, Andes monitors the GPU KV cache occupancy and

triggers the solver only when occupancy exceeds a high watermark (e.g., 90%). For the

latter, Andes monitors token generation latency and triggers the solver when it begins to

exceed what is required to satisfy the fastest token delivery speed requirement among in-flight

5The overhead of preemption depends on how much memory was freed, not the number of requests.
Therefore, for the same amount of memory freed from preemption, it’s better to free a smaller number of
requests.
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requests.

Batch Size Pruning. In order to further reduce invocations, we reduce the search space

of batch size B from [1, N ] to [Bmin, Bmax]. First, there is no point in exploring very large

batch sizes that cannot be realized. Thus, Bmax is determined by adding to the batch requests

with the shortest context lengths until the total number of tokens in the batch reaches M , at

which point batch size is the largest possible. On the other hand, very small batch sizes that

can generate tokens faster than the user token consumption speed of every request are also

suboptimal. This is because generating tokens that fast does not increase the QoE of served

requests, but on the other hand will serve fewer requests, potentially degrading the QoE

of requests that are left waiting. Thus, Bmin is set as the largest batch size that generates

tokens faster than the most stringent user consumption speed across all requests.

We show in Section 4.5.5 that this solution can achieve average QoE close to the 3D DP

algorithm.

2.4.3 Incorporating Preemption Overhead

We introduce an overhead-aware refiner that enhances the priority-based scheduler’s decisions

by accounting for preemption overhead’s impact on overall QoE. This is important because

preemptions are not free; they introduce either extra computation or memory movement

overhead at the time of preemption and resumption [142, 83, 9, 183]. This overhead can last

hundreds of milliseconds to even seconds, and interrupts the whole token generation process.

Frequent preemptions can accumulate overhead, delaying token generation and degrading

QoE for all requests. Conversely, restricting preemptions too much may prevent the system

from serving urgent requests, missing chances to improve overall QoE.

Walkthrough. The overall intuition is that if ongoing requests have enough slack before

they begin degrading QoE, Andes can afford to preempt more requests to maximize overall

QoE. In Figure 2.8, the priority-based scheduler (§2.4.2) decides to admit {R8, R9, R10}
and preempt {R1, R2, R3}, and passes the decision to the refiner. The refiner estimates the

overhead for each potential admission and preemption and assesses its impact on the QoE

of all ongoing requests. Starting with the highest priority request to admit, R10, the refiner

identifies the minimal set of lowest priority requests to preempt, such as R1, to free sufficient

resources for R10. With this, Andes estimates the total latency overhead of admitting R10 and

preempting R1. In this case, Andes finds that the QoE gain of admitting R10 is higher than

the total QoE loss of ongoing requests caused by the admission and preemption overhead.

Thus, R10 is added to the final admission list and R1 to the final preemption list. This process
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Figure 2.8: Andes refines the decision made by the priority-based scheduler so that it does
not degrade more QoE than it improves. This example does not continue from Figure 2.7.

stops when Andes finds that the system can no longer tolerate additional overhead without

degrading QoE. Ultimately, the refiner admits only {R9, R10} and preempts {R1, R2}.

Overhead Estimation. As seen earlier, Andes needs to estimate the overhead of request

admission/resumption and preemption. Andes supports any request preemption mechanism,

with recomputation and swapping being the most common in existing systems. The former

drops the KV cache of the request upon preemption, incurring no overhead, and then recom-

putes them on resumption, incurring overhead equivalent to one prefill. The latter moves

the request’s KV cache between GPU and CPU memory, which incurs copying overhead.

As overhead is predictable [183], so Andes offline-profiles the latency overhead of available

preemption mechanisms under various context lengths and selects the faster one, and uses

that data to estimate overhead for requests.

Balancing QoE Gain and Overhead. Preemption overhead delays token generation

for all ongoing requests, but the priority-based scheduler’s decision does not account for
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this. Thus, excessive preemption delays may cause a net QoE degradation if the decision is

implemented naively. Thus, for each potential admission or resumption, the refiner calculates

the QoE loss resulting from the associated preemption overhead and only proceeds if the

QoE gain exceeds this loss. The QoE gain from admitting or resuming a request is already

computed by the priority-aware scheduler (§2.4.1). On the other hand, the QoE loss of an

ongoing request i can be computed identically with how Qwait,i was estimated, where ∆t is set

to be the preemption overhead. The total QoE loss of all ongoing requests are then added up.

If the net QoE change is positive, the refiner retains that set of admission/resumption and

preemption decisions, and moves on to the next set of requests in priority-order. Otherwise, it

means that the system can no longer tolerate admitting/resuming requests without degrading

overall QoE, so the refiner cancels the rest of the admission/resumption and preemption

decisions from the priority-based scheduler.

We show in Section 4.5.5 that the overhead-aware refiner is critical in maintaining high

QoE across requests.

2.5 Implementation

Andes mainly consists of the server-side QoE-aware token-level preemptive scheduler and

the client-side token pacer.

Request Scheduler. Andes’s scheduling algorithm can work with any LLM serving sys-

tem that supports continuous batching and at least one preemption mechanism (swapping

or recomputation). As a reference, we implemented Andes’s scheduler as an alternative

scheduling policy in vLLM [83]. The scheduler only manages requests coming into the vLLM

instance it is integrated with, assuming that cluster-level load balancing and fault tolerance

are done separately.

Token Pacer. The server implements push-based streaming because (1) tokens generated

for a single user are only streamed to that user exactly once, and (2) the server is typically

resource constrained – particularly so if CPU memory is being used for storing the KV

cache of preempted requests – and therefore prefers to deallocate request state as quickly as

possible. As such, the client-side token pacer receives tokens as soon as they are generated,

even if they were generated at a pace that exceeds the user’s consumption speed. The token

pacer temporarily buffers excess tokens and yields them smoothly along the user’s Ideal

Consumption Timeline.
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We give a concrete example of how the token pacer works with the server-side request

scheduler in the Appendix A.4.

2.6 Evaluation

We evaluate Andes on a variety of models, hardware configurations, and request datasets with

varying input and output length characteristics (Tables 2.3 and 2.4) and find the following:

• Andes shows end-to-end improvements on a 10-hour real-world trace, improving average

QoE from 0.9 to 0.99 and reducing average TTFT from 11.2s to 2.4s (§2.6.2).

• On synthetic bursty traces, Andes enhances average QoE by up to 4.7× over vLLM and

boosts serving capacity by up to 1.74× while maintaining high QoE (§2.6.3).

• Andes provides superior user experience compared to vLLM for audio-based conversa-

tional AI services (§2.6.4).

• Andes’s keeps preemption overhead under control and outperforms baselines under dif-

ferent solvers, QoE gain estimation time horizons, and request distributions (§4.5.5).

2.6.1 Experiment Setup

Model Architecture Memory Hardware

Phi-3-mini 3.8B [8] Dense, MHA 7 GB A100×4
Command R 32B [35] Dense, GQA 61 GB A100×8
Phi-3.5-MoE 16×3.8B [8] MoE, GQA 80 GB A100×8
Llama 3.1 70B [40] Dense, GQA 132 GB A100×8

Table 2.3: Models and hardware configurations.

Dataset
Input Length Output Length
Mean Std. Mean Std.

Multi-Round ShareGPT [150] 3171 7943 385 300
ArXiv Summarization [33] 17855 11401 605 153
Coding Challenges [60] 675 1552 5423 21293

Table 2.4: Request dataset statistics.

Models, Hardware, and Requests. We evaluate Andes on models with diverse archi-

tectures (Dense vs. Mixture-of-Experts, Multi-Head Attention vs. Grouped-Query Atten-

tion) and request input/output datasets with varying sequence lengths. We leverage both
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real-world request traces from BurstGPT [157] and synthetic bursty traces designed to con-

duct controlled experiments as detailed in Section 2.6.2 and Section 2.6.3 respectively. We

deployed models with tensor parallelism on NVIDIA A100 SXM4 40GB GPUs in one AWS

p4d.24xlarge instance. See Tables 2.3 and 2.4 for full details.
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Figure 2.9: System status while replaying BurstGPT. Compared to vLLM (first row), Andes
(second row) significantly reduces the waiting queue length and improves overall QoE.
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Figure 2.10: The Token Generation Timeline of select requests, with request submission time
shifted to zero. Requests served by Andes, as opposed to vLLM, are well above the Ideal
Consumption Timeline.

QoE Parameters. In real-world scenarios, QoE parameters (target TTFT and token con-

sumption speed) of users will vary widely. For each request, we set the target TTFT to be

max(input length // 5000, 1) seconds, where 5000 tokens/second is the prefill throughput

of our hardware setup. This reflects the expectation of an average non-technical user who

expect a response time that is proportional to the input length. On the other hand, we use

the human reading speed distribution in Table 2.1 to assign user token reading speeds to

requests. In practice, this should be tailored to the application’s requirements. For instance,
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API price tiering can also be implemented by providing a higher token delivery speed for

higher-priced tokens, allowing users to select the tier suitable for their downstream applica-

tion.

Baselines. We compare with vLLM [83] (v0.6.1) and Sarathi-Serve [11] (i.e., chunked

prefill), all of which adopts the FCFS scheduling policy. Additionally, we compare with the

Least QoE Slack First (LQSF) scheduling algorithm, which prioritizes requests most at risk

of QoE degradation based on the QoE gain we defined. vLLM server configurations across

all approaches are kept identical (Appendix A.5 lists all).

Metrics. We report the following key metrics:

• Average QoE: The QoE value of requests when they finish, averaged across all requests.

• Serving capacity: The highest burst request rate the system can serve while keeping

the average QoE across all requests above a specific threshold.

2.6.2 End-to-End Improvements on Real-World Traces

We replay a 10-hour segment of the BurstGPT [157] request arrival trace, captured from real-

world LLM services, using the Multi-Round ShareGPT dataset and Phi-3.5-MoE 16×3.8B.

QoE Improvements. Over the whole 10-hour trace, Andes improves average QoE from

0.9 to 0.99 and reduces average TTFT from 11.2s to 2.4s. Improved QoE without additional

resources allows Andes to handle more concurrent requests while maintaining high QoE

or reduce GPU usage for the same QoE, yielding cost savings. We provide a more detailed

breakdown analysis of Andes for the burst that occurs during the one-hour window (between

hour 7 and 8) in Appendix A.6.

Queue Length Reduction and Serving Capacity Gain. To examine the system’s

real-time behavior, we visualize the status of Andes and vLLM during this 10-hour period

in Figure 2.9. During high-load periods (0-1h and 7-8h), Andes can reduce the peak wait-

ing queue length by a significant 85% through token-level preemptive request scheduling.

Furthermore, unlike vLLM, a large portion of the waiting requests in Andes are those that

have been preempted by the scheduler after generating sufficient tokens for their users, ex-

plaining the high average QoE achieved by Andes. Practically, this means Andes can satisfy

these waiting requests without overprovisioning the GPUs to host more serving instances,

effectively reducing the cost or increasing the serving capacity compared to vLLM.
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Token Generation Timeline Improvements. Figure 2.10 presents a comparison of

token generation timelines for a selected set of requests from the trace, under both vLLM and

Andes. With QoE-aware, token-level preemptive scheduling, Andes consistently delivers each

token ahead of the ideal consumption point, ensuring smooth user experience. In contrast,

vLLM suffers from head-of-line blocking, leading to noticeable degradation in QoE for many

requests. With the help of token pacer, each request’s token delivery timeline aligns with

the user ideal consumption timeline.

2.6.3 Improvements Under Controlled Burstiness
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Figure 2.11: Andes improves average QoE under different request burstiness.

We have seen that Andes can effectively handle requests from real-world traces. To

quantify its QoE improvement and serving capacity gains over baselines, we evaluate Andes

on synthetic traces containing request bursts that resemble those in BurstGPT. BurstGPT

exhibits an average of three burst periods per hour, each lasting ∼7 minutes and showing

2× higher request rates than the average. Following this, we introduce the Cyclic Burst

Load Pattern, mimicking BurstGPT’s burst frequency and intensity. Bursts are defined by

two parameters: intensity (ratio of burst request rate to average) and duration (fraction of

time spent in burst). Request arrivals in both burst and non-burst phases follow a Poisson

process, alternating cyclically—details in AppendixA.7.
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Target
QoE

Phi-3-mini
3.8B

Command R
32B

Phi-3.5-MoE
16×3.8B

Llama
3.1 70B

0.95 1.74× 1.05× 1.35× 1.22×
0.96 1.73× 1.05× 1.29× 1.15×
0.97 1.71× 1.04× 1.22× 1.08×
0.98 1.65× 1.02× 1.15× 1.33×
0.99 1.58× 1.00× 1.08× 1.17×

Table 2.5: Andes improves the serving capacity on Multi-Round ShareGPT dataset for
different target QoE compared to vLLM.

Following statistics from BurstGPT, we set the default burst intensity to 2 and the burst

duration to 35%. In our experiments, we adjust either burst intensity or burst duration

while leaving the other at its default value. The average request rate of the whole cycle is

set to be the serving system’s throughput without any burstiness, preventing the system’s

queue from growing indefinitely over time. This also allows us to evaluate systems on one

cycle of the trace, as most requests will have been handled by the end of one cycle.

Improvements Under Varying Burst Intensity. We report the average QoE under

different burst intensities in Figure 2.11. As burst intensity increases, Andes continues to

maintain high average QoE, achieving up to 4.7× QoE improvement. Thus, Andes sustains

higher burst intensity than vLLM while achieving the same QoE. We report the serving

capacity gain to achieve different target average QoE in Table 2.5, Andes can improve the

serving capacity up to 1.74× more burst intensity on Multi-Round ShareGPT dataset. More

results on serving capacity gain can be found in Appendix A.8.

Improvements Under Varying Burst Duration. We report average QoE under vary-

ing burst durations in Figure 2.11. Andes consistently achieves up to 3.5× higher QoE than

vLLM across all models and request datasets. Conversely, First-Come-First-Serve (FCFS)

baselines suffer from head-of-line blocking during bursts, reducing QoE. Sarathi-Serve’s chun-

ked prefill increases Time-to-First-Token by disrupting the prefill stage. Least QoE Slack

First (LQSF) scheduling slightly improves QoE by prioritizing at-risk requests but underper-

forms Andes by neglecting resource demands, causing resource-intensive requests to starve

others.

How Much Potential Gain was Realized? As derived in Section 2.2.3, Andes can serve

2.3× more requests under ideal circumstances for the case of Phi-3.5-MoE 16×3.8B with the

Multi-Round ShareGPT request dataset. In practice, as shown in Figure 2.11, Andes achieves
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a 1.4× improvement, realizing approximately 60% of the ideal gain under this setup. This

gap is due to scheduling overhead, request prefill, and request preempt/resume overhead,

which limit the full utilization of the system’s available slack.

2.6.4 Audio-Based Conversational AI
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Figure 2.12: In an audio-based conversational AI service, Andes provides superior silence
time ratio compared to vLLM.

We evaluate Andes in the context of an audio-based conversational AI service with two

components: An LLM serving system that generates responses (vLLM vs. Andes), and a

text-to-speech (TTS) engine (GPT-4o mini [116]) that converts text chunks into speech and

plays them back to the user. We use the speaking speed of English (Table 2.1) as the target

token delivery speed for all requests.

Figure 2.12 reports silence time ratio, the percentage of time during end-to-end user

interaction when the user heard nothing, averaged across Multi-Round ShareGPT requests

served by Llama 3.1 70B. This metric, inspired by Buffering Ratio [38] in video streaming,

includes both join time and intermediate pauses. At low burst intensities, vLLM and Andes

yield similar silence time ratios. As burst intensity rises, vLLM’s silence time ratio reaches

40%, while Andes lowers it by up to 3.3× with consistent token delivery.

2.6.5 Sensitivity Analysis and Ablation Studies

We evaluate Andes’s robustness across various settings and configurations. We report results

using the Llama 3.1 70B model on the Multi-Round ShareGPT with a default cyclic burst

load pattern, observing consistent trends across setups.

The Overhead-Aware Refiner is Indispensable. We assess the overhead-aware re-

finer’s effectiveness (§2.4.3) via an ablation study comparing Andes with and without it.
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Figure 2.13: Overhead-aware refiner is critical in optimizing QoE.

Figure 2.13 illustrates average QoE and preemptions per request across burst durations.

Without the overhead-aware refiner, Andes experiences a high number of preemptions as

burst duration increases, leading to delays in token generation for ongoing requests and

significantly degrading QoE. In contrast, Andes with the overhead-aware refiner balances

QoE improvement and scheduling costs, consistently achieving higher QoE across various

burstiness conditions.
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Figure 2.14: Andes’s greedy solver yields competitive performance compared to the optimal
DP solver.

Different Knapsack Solvers. We compare Andes’s greedy knapsack solver with the

optimal-but-slow 3D Dynamic Programming solver. Figure 2.14 shows that the greedy

solver achieves slightly better average QoE under longer burst durations or higher burst

intensities. Andes outperforms the exact 3D DP solver because its greedy solver is more

suitable for real-time decision-making, being ∼ 20× faster while still delivering high-quality

approximate solutions.
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Figure 2.16: Poisson arrival.

QoE Gain Estimation Time Horizon. We evaluate how varying ∆t, the time horizon

over which a request’s QoE gain is estimated, influences average QoE. Figure 2.15 shows

that the average QoE remains roughly consistent for various ∆t values and significantly

outperforms the baselines. Optimal ∆t varies by model and request distribution, requiring

pre-deployment tuning.

Poisson Arrival Pattern. For our main results, we use the real-world BurstGPT trace

and synthetic traces that resemble BurstGPT’s load surges. For completeness, we present

results from running Andes and baselines on a Poisson arrival trace. Figure 2.16 shows the

average QoE of systems under varying Poisson arrival rates over a duration of 20 minutes.

Andes still consistently delivers higher average QoE compared to baselines, particularly under

high request rates.

2.7 Related Work

LLM Inference. LLMs have numerous applications including chatbots, code generation,

and agents. Andes focuses on online LLM inference serving for conversational AI services, a

dominant use case of LLM serving [62].

On the systems-side, Orca [172] introduced iteration-level batching to enhance the

throughput of LLM inference, followed by vLLM [83] developing PagedAttention to optimize

memory usage. DistServe [183], Sarathi-Serve [11], and LoongServe [160] optimize prefill and

decode computations, but keeps FCFS scheduling. Llumnix [146] proposes cluster-wide load

balancing and request live migration, VTC [143] a non-preemptive fair request scheduler, and

CacheGen [101] a streaming and reusing technique for KV cache entries across LLM server
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instances. Andes is the first to identify the insufficiency of existing optimization metrics for

user experience in conversational AI, and to optimize QoE using a preemptive scheduling ap-

proach. Our QoE definition can be extended and adapted to suit other application scenarios

as well.

Video Streaming and QoE. QoE in conversational AI services has some parallels with

QoE in video streaming [38, 16, 100, 72, 178] but encounters unique challenges. While

video streaming is primarily influenced by network conditions [18], LLM serving is mainly

constrained by GPU compute and memory [154]. Additionally, factors important to video

streaming QoE include startup time, average bitrate, and buffering time ratio [71]. Some

have parallels in conversational AI (e.g., startup time), whereas others do not. We proposed

a QoE metric tailored to conversational AI and designed a serving system that optimizes it.

2.8 Conclusion

In this work, we identify that user experience has thus far been overlooked in optimizing

systems for conversational AI services. This motivates us to define a QoE metric for conver-

sational AI and build Andes, an LLM serving system that optimizes for it. Andes delivers

significantly higher QoE compared to existing systems, which also translates to being able

to serve more concurrent requests while maintaining the same level of QoE. We hope that

Andes will encourage the community to dive deeper into understanding and optimizing user

experience for conversational AI services.
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CHAPTER 3

Empowering Diverse End Users via

Cohort-Based Collaborative Learning

Collaborative learning (CL) is an emerging machine learning (ML) paradigm that enables

heterogeneous edge devices to collaboratively train ML models without revealing their raw

data to a logically centralized server. However, beyond the heterogeneous device capacity, CL

participants often exhibit differences in their data distributions, which are not independent

and identically distributed (Non-IID). Many existing works present point solutions to address

issues like slow convergence, low final accuracy, and bias in CL, all stemming from client

heterogeneity.

In this chapter, we explore an additional layer of complexity to mitigate such heterogeneity

by grouping clients with statistically similar data distributions (cohorts). We propose Auxo

to gradually identify such cohorts in large-scale, low-availability, and resource-constrained

CL populations. Auxo then adaptively determines how to train cohort-specific models in

order to achieve better model performance and ensure resource efficiency. Our extensive

evaluations show that, by identifying cohorts with smaller heterogeneity and performing

efficient cohort-based training, Auxo boosts various existing CL solutions in terms of final

accuracy (2.1%–8.2%), convergence time (up to 2.2×), and model bias (4.8% - 53.8%).

3.1 Introduction

Collaborative learning (CL) enables distributed clients to collaboratively train an ML model

without centralizing their local data to the cloud. It circumvents the systematic privacy

risk and cost of data transfers in centrally collecting user data. Hence, CL is increasingly

being adopted by many popular applications, such as Google’s Gboard [5], Apple’s Siri [121],

NVIDIA’s medical platform [92], Meta’s Ads recommendation [66], and WeBank risk pre-

diction [108].
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Collaborative Learning (CL) typically involves a substantial number of clients, ranging

from hundreds to millions, and the training process can span days or even weeks [170].

Given the limited availability and resource constraints of client devices, only a fraction

of clients contribute to each round of training in practice. Therefore, it is essential to

reduce the training time while accommodating these practical constraints. However, CL

encounters unique challenges stemming from statistical heterogeneity among user data, which

contributes significantly to extended training time and suboptimal model performance [93,

180, 148, 102]. Several studies that try to mitigate the effect of statistical heterogeneity,

such as FedYoGi [127], q-FedAvg [91], FTFA [32], have shown that their convergence speed

depends on the degree of heterogeneity, both theoretically and empirically (§3.2.2).

We explore the possibility of mitigating this issue at its core by grouping clients with

similar data distributions, known as cohorts [175] (§3.2.3). If a population has K cohorts,

training K separate models – one for each cohort with lower statistical heterogeneity – can

boost the performance of many existing CL algorithms that are complementary to ours and

focus on convergence [127, 90, 87], fairness optimization [91], communication efficiency [6,

133, 73], etc.

Although recent works attempted to identify cohorts and train separate models for

them [26, 50, 102, 169], they are not applicable to real-world CL deployments. This is

because unlike easy-to-deploy solutions such as FedAvg and FedYoGi [127, 109], clustering

clients at scale and in the wild poses unique challenges (§3.2.4). Existing solutions often

ignore the scale and sparsity of the device participation. They also ignore the constraints on

availability and capacity of end-user devices, which calls for low-overhead algorithms.

We propose Auxo to enable 1) scalable cohort identification to reduce intra-cohort het-

erogeneity in large-scale and limited-availability CL scenarios; and 2) efficient cohort-based

training to facilitate most CL optimizations, such as faster training completion and better

model accuracy, without additional resource requirements. Auxo addresses the following

challenges toward practical CL deployment (§4.4). First, unlike existing clustering strategies

which require exhaustive passes through all clients [137], on-demand device availability [26],

or additional on-device training for every participant [50, 39], Auxo introduces a more flex-

ible client clustering solution. It allows sporadic client availability, respects client resource

constraints, and maintains client privacy. Auxo can progressively identify cohorts and scal-

ably cluster clients based on their gradients in spite of the absence of anchored gradients for

straightforward comparison. Second, unlike expensive and ad-hoc hyper-parameter tuning

stages used in existing solutions, Auxo progressively generates the appropriate number of

cohorts and identifies suitable timings to create them. Thus, Auxo maximizes the use of
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Figure 3.1: Traditional CL overview. The server first selects from available clients and sends
out model weights. Clients train the updated model on their local dataset. After training is
finished, clients report their model gradient to the server.

limited client resources to enhance training speed and model performance.1 Finally, we de-

sign a scalable system to support efficient cohort clustering and training at scale while being

robust to uncertainties (e.g., failure tolerance and unfavorable settings) at scale (§3.5).

We have implemented (§3.6) and evaluated (§4.5) Auxo on a wide variety of real-world

CL datasets, tasks, and algorithms at scale. Compared to existing solutions, Auxo improves

the performance for various CL algorithms, such as better model accuracy (2.1%-8.2%) and

convergence speed (up to 2.2×) and smaller bias of model accuracy (4.8% - 53.8%).

Overall, we make the following contributions in this paper:

1. We propose a systematic clustering mechanism to identify cohorts for the practical

large-scale, low-availability and resource-constrained CL setting.

2. We identify a sweet spot for jointly optimizing model convergence and training cost,

and provide analytical insights to ensure good model performance.

3. We implement and evaluate Auxo at scale, showing large improvements in final ac-

curacy, convergence time, and model fairness over the state-of-the-art. Auxo is open-

source and available on GitHub.2

3.2 Background and Motivation

We start with a brief introduction of collaborative learning (§3.2.1), followed by the challenges

it faces in real-world settings (§3.2.2 ) . Next, we describe some opportunities to improve CL

1We refer to the number of participants that contribute to a round of CL training as training resource
throughout this paper.

2https://github.com/SymbioticLab/FedScale/tree/master/examples/auxo
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that motivates our work (§3.2.3). Finally, we explain the limitations of related works that

motivate our algorithm and system design (§3.2.4).

3.2.1 Collaborative Learning

A typical cross-device CL system consists of two primary components (Figure 3.1): A log-

ically centralized cloud server that maintains a single global model and many distributed

clients with private local data. The overall lifecycle of an CL training round can be divided

into three broad stages.

1. Selection stage: Clients check in with the server continuously to announce their

availability for CL computation. The server selects a number of participants for that

round based on its client selection strategy.

2. Execution stage: The selected participants download the current model from the

server and perform server-specified computation on their local data.

3. Aggregation stage: Participants that successfully complete the execution stage send

model updates back to the server. The server aggregates the updates to finalize an

updated model for the next round.

3.2.2 Heterogeneity Challenges in CL

Unlike centralized ML, CL faces unique challenges in terms of statistical and system hetero-

geneity. The former refers to the varying data volumes and difference of data distribution

across clients, which hinders model convergence; the latter refers to variations in system

characteristics among participants’ devices, which results in large differences in training

performance. Increasing heterogeneity in either dimension leads to poor performance.

Impact of statistical heterogeneity. Under large statistical heterogeneity across clients,

poor model accuracy, training time and fairness are often exacerbated, because the model is

deployed on individual clients but is often trained over all the clients. Existing works that

address statistical heterogeneity in CL assume bounded heterogeneity to simplify the problem

complexity [93, 180, 127, 90]. However, we notice this does not hold in practical CL settings,

which leads to great performance degradation under larger statistical heterogeneity.3 Indeed,

our analysis of FedYoGi [127] (a state-of-the-art CL algorithm) on OpenImage [1] (an CL

image dataset), in Figure 3.2a shows that the model accuracy and its fairness across clients

3In this experiment, we measure the statistical heterogeneity among a set of clients using the popular L2
distance on their data distributions [87].
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Figure 3.2: The impact of heterogeneity on final accuracy.
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worsens with increasing statistical heterogeneity. To achieve the same model performance

under larger heterogeneity, more communication and/or computation costs are needed. This

is true for personalization algorithms as well [148].

Impact of system heterogeneity. Heterogeneity of system-level characteristics raise

challenges such as fault tolerance and straggler mitigation [90, 66]. Over-commitment [23],

which discards updates from slowest-responding participants, is commonly used to reduce

the impact of stragglers, but it may lead to participation bias against slow devices. Fig-

ure 3.2b shows the final accuracy of the OpenImage task under different degrees of system

heterogeneity (variance of system speed). For each experiment, we control the round du-

ration and the number of successful participants to be the same; as a result, participation

bias exacerbates with increasing system heterogeneity. Since participation bias may enhance

statistical heterogeneity in another form, the final accuracy decreases with increasing system

heterogeneity (albeit at a slower rate than statistical heterogeneity).
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CCL CL+HC FlexCCL IFCA Auxo
Partial part. × X X X X
Low avail. × × X X X

Res. constraint × × × × X
Training perf. × × × × X

Table 3.1: Comparing Auxo with existing Clustered CL.

3.2.3 Opportunities

The opportunity for improving CL training performance, therefore, lies in decreasing het-

erogeneity especially the statistical heterogeneity based on the observation of the previous

subsection. By identifying statistically homogeneous groups and performing CL within each

group, we may be able to boost model performance of most CL algorithms that are suffered

by the heterogeneity.

Despite large statistical heterogeneity across the entire CL client population, there exist

groups of statistically similar clients in most large populations. Figure 3.3 shows that for

four representative CL workloads [85] in the real world. We use K-means clustering (with

increasing values of K) on clients’ data distribution by their L2-distance metric. As the

number of clusters increases from one (i.e., traditional CL with one global model) to larger

values, we observe a small number of statistically similar groups emerge for most datasets.

However, training K models to converge may need more training resources compared to

training one model. As shown in Figure 3.4, increasing training resources has diminishing

returns on the model convergence, which presents the primary opportunity leveraged in this

work: instead of letting all available clients contribute to a single global model, it may be

more beneficial to partition them into several cohorts, each with smaller heterogeneity.

3.2.4 Limitations of Existing Clustered CL

Recent efforts in the ML community have (theoretically) explored to create smaller groups

of statistically similar clients. Yet, existing clustered CL algorithms often fall short across

multiple dimensions in practical deployments, which motivates us to design systems support

for efficient cohort identification and training. We empirically show the superior performance

of Auxo over them too (§3.7.2).

Scalability. CL in practice often involves millions of clients, and only a small fraction

(∼5% [23, 85]) are available to participate in during a time window. Such low availabil-

ity and partial participation limit the available information for clustering algorithms. This,
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unfortunately, is ignored by CCL [137], multi-center [102] and CL+HC [26], making their

deployment impractical as they require a complete pass over the entire population to identify

clusters. Furthermore, clients usually have limited on-board resources, but IFCA [50], Flex-

CCL [39], ICCL [169], k-FED [37] and CL+HC require extra computation for every client

to assign them to a cluster. This imposes a significant computational and communication

burden on already resource-constrained devices and diverts resources away from the primary

task of model training. For example, IFCA initiates multiple global models and broadcasts

all models for each participant to choose from in each round; and FlexCCL and CL+HC

require pre-training for every client to identify their clusters.

Efficiency. In addition to the challenge of identifying statistically similar groups at scale,

how to leverage those similar groups to improve model performance introduces new trade-

offs in deciding the right number of cohorts and time to partition. Given a fixed amount

of resources, generating more cohorts results in smaller heterogeneity; but it divides up the

fixed training resource and unique training data per cohort, which hurts model convergence

and generalizability. Moreover, partitioning clients too early can lead to model bias as the

model is not generalized well by training on various clients, while partitioning too late can

result in model variance over high heterogeneity. Unfortunately, most existing clustered CL

algorithms are unaware of these tradeoffs, and rely on ad-hoc hyper-parameter tuning, which

is prohibitively expensive as CL training can take many days and consume a large amount

of resources.

In conclusion, as detailed in Table 3.1, an effective client clustering solution in Collabo-

rative Learning (CL) should take into account the following realistic constraints:

1. Partial participation: The algorithm should accommodate CL training that involves

only a fraction of total participants in each round.

2. Low availability: The algorithm should respect clients’ sporadic availability, without

necessitating participation from any clients at a specified time.

3. Resource constraints: The algorithm should avoid demanding additional on-device

computation for performing clustering.

4. Training performance: The algorithm should optimize model performance—focusing

on convergence and generalizability—within the constraints of a fixed training resource.

This includes consideration of how clustering the CL population might positively im-

pact performance despite reduced heterogeneity.
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3.3 Auxo Overview

Auxo progressively reduces the intra-group heterogeneity and improves the model perfor-

mance through cohort identification and cohort-based training toward practical CL. In this

section, we introduce the cohort abstraction, provide an overview of how Auxo manages

cohorts in a distributed fashion and fits into the CL life cycle.

3.3.1 Cohort Abstraction

Instead of training only one global model, Auxo trains a model separately for each group of

clients that shares similar statistical data characteristics. We refer to each of these groups,

which can perform independent CL training over more homogeneous clients than the overall

population, as a cohort Cm(m ∈ [1,M ]) with two associated properties:

1. A cohort should hold a specialized model that targets on it data distribution with

smaller heterogeneity.

2. A cohort should have enough members |Cm| to form a meaningful group and deliver

the benefit of partition.

Traditional (i.e., cohort-agnostic) CL training has a single cohort with unbounded hetero-

geneity among the members.
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3.3.2 Auxo Architecture

Auxo server consists of two primary components (Figure 3.5):

1. A logically centralized cohort coordinator performs three main functions. First,

it manages existing cohorts for fault tolerance. Second, it matches clients to their

best-fit cohorts. Finally, it monitors the progress of cohort training and identification

in order to decide cohort partition when it observes an opportunity for better model

convergence .

2. A set of cohorts each performs independent CL training. Each cohort contains tra-

ditional CL components such as aggregator and client selector. On top of traditional

CL training activities, each cohort continuously identifies its internal composition, re-

ports its progress to the coordinator and waits for the partition instruction from the

coordinator.

CL Lifecycle in Auxo As shown in Figure 3.6, following the traditional CL stages in

Section 3.2.1, Auxo adds a matching stage 0 and a feedback stage 4 before and after the

traditional round.

0 Matching stage: When checking in, clients using Auxo optionally include an affinity

request (a hint about their cohort preference) to the cohort coordinator. If it took

part in the training of one or more cohorts in the past, its preference is dependent on

previous feedback. Otherwise, it has no preference. The cohort coordinator forwards

the affinity request to the corresponding cohort based on its search algorithm and

client’s request.

1 -3 Traditional CL stages: Each cohort starts a traditional CL training round inde-

pendently after continuously receiving its client requests from the cohort coordinator.

These traditional stages include client selection, client training, server aggregation, and

so on.

4 Feedback stage: After the traditional CL round finishes, each cohort updates the

affinity feedback for its current participants based on the Auxo clustering algorithm

(§4.4). Then, each participant receives an affinity feedback – w.r.t. the cohort it

trained with — and updates the corresponding affinity record for submitting requests

in a future round of CL training. During this stage, each cohort also reports its training

and identification progress to the cohort coordinator.
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Resource management: Auxo jointly maximizes model convergence and resource ef-

ficiency in two ways. First, its scalable cohort identification algorithm does not require

extra on-device computation and uses the same amount of resources as traditional CL al-

gorithms(§4.4.1- §3.4.3). Second, it carefully chooses the number of cohorts and time to

partition to theoretically guarantee better model convergence and generalizability despite

each cohort having less training resources than the previous global model (§3.4.4).

Threat model and robustness. Like state-of-the-art production CL systems [23, 66,

155], Auxo considers an honest-but-curious centralized server for aggregation, which can

infer any information without interfering with the CL training. Auxo also assumes that

most clients are honest (correct), and only a small fraction can act maliciously under the

control of a bad actor.We elaborate on how Auxo can provide robustness under this threat

model in Section 3.5.2.

3.4 Auxo Clustering

In this section, we present the core clustering algorithm used in Auxo to identify cohorts

(§4.4.1- §3.4.3). Then, we introduce the systems techniques to enable cohort-based training

under realistic constraints (§3.4.4).

3.4.1 Problem Formulation and Overview

Auxo aims to accurately cluster clients by their statistical heterogeneity into appropriate

cohorts under the following real-world CL constraints:

1. Scalability: The participants Pr in each round are only a small fraction of all clients

(N), i.e., |Pr| � N . How to identify cohorts and cluster clients at scale under such

low client availability?

2. Resource Efficiency: How to conduct the clustering process without incurring over-

head on devices, such as extra model training and client participation that do not

contribute to model training?

3. Information Deficiency: The information available to today’s CL central server is

limited to such as gradients and training loss. How to cluster clients without requesting

additional information from clients?

Problem Formulation: The input to the server is a list of participants along with

their gradients collected over training rounds based on these two constraints. Intuitively,
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the gradient of client relies on its local dataset xi and the received model weights (unique

for the round r and cohort m), and this gradient is multi-dimensional, embedding more

information than its counterparts (e.g., training loss). As such, we can formulate the input

of the clustering algorithm in each round r as {{grm(xi)}i∈Prm}m∈[1,Mr], where grm(xi) is the

gradient of participant i , Prm is the participants list, and Mr is the number of cohorts.

The output is the cohort membership {Si ∈ [1,M ]} for each client i ∈ [1, N ]. Following

the objective of traditional clustering algorithms [105], Auxo also aims to minimize the

average intra-cohort heterogeneity (J) defined as:

J =
M∑
m=1

1

2|{x|Sx = m}|
∑

Si,Sj=m

||xi − xj||2. (3.1)

Intuitively, we can model it as a clustering problem {x1, ..., xN} → {S1, ..., SN}, whereas

doing so encounters new challenges.

1. How to derive client data similarity without direct access to data and without iterating

all but part of the clustering objects every round.

2. How to assign new incoming clients to the best-fit cohort without prior information

after Auxo generates more than one cohorts.

Following this problem definition and challenge, Algorithm 2 illustrates the overview of

Auxo clustering mechanism, which consists of an online cluster algorithm to cluster clients at

scale (§3.4.2) and the cohort selection for individual CL clients (§3.4.3). Note that, Auxo’s

clustering algorithm can operate in the background, imposing no additional overhead on the

training process.

3.4.2 Online Clustering

Auxo resorts to the similarity of clients’ gradients to capture their statistical similarity. Our

design is inspired by the recent advances in ML theory [137, 141], which show that the data

heterogeneity can attribute to the gradient divergence [90] and a smaller heterogeneity would

have smaller gradient divergence for the same initial model weight. Here, we measure such

gradient divergence using the widely-used cosine similarity [168] among the input batch of

gradients grm(xi), i ∈ Prm to investigate client similarity.4 Compared to other counterparts

such as L-2 distance which does not take into account the direction of the gradients, cosine

similarity better quantifies how similarly their needed model changes are directed.

4Cosine similarity measures the similarity between two vectors of an inner product space [168].
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Algorithm 2 Auxo Clustering Algorithm

Input: Participants list P , Exploration factor ε
Output: Client-cohort membership list SD

1 M ← 1 . Initialize the number of cohorts
2 SD ← 0 . Initialize client-cohort membership
3 RD,M ← 0 . Initialize client-cohort reward
4 LD,M ← N/A . Initialize client-cohort cluster id
5 for each round r = 1, 2, . . . do
6 Prm ← {i|Si = m, i ∈ Pr}
7 for each cohort m = 1, . . . ,M in parallel do
8 RPrm ← ClientClustering(Prm)
9 SPrm ← CohortSelection(RPrm , ε, r)

10 return SD
11 function ClientClustering(Prm)
12 if r = 1 then
13 LPrm,m ← Kmeans(grm(xPrm), K)
14 else
15 Pk ← {i|Li,m = k, i ∈ Prm},∀k ∈ [0, K)

16 Ck ← {grm(xPj)},∀k ∈ [0, K)
17 LPrm,m ← arg mink ‖grm(xPrm)− Ck‖2

18 if PartitionCriteria(m) then
19 M ←M +K − 1
20 RD,m+k ← RD,m + 0.1 · 1(LD,m = k),∀k ∈ [0, K)

21 if M > 1 then
22 RPrm,m ← ExploitReward(RPrm,m, xPrm)
23 RPrm,m′ ← ExploreReward(RPrm ,m

′), ∀m 6= m′

24 return RPrm
25 function CohortSelection(RPrm , ε, r)
26 for client i in Prm do
27 if random(0,1) > εr then
28 Si ← random(0,M)
29 else
30 Si ← arg maxRi

31 return SPrm
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However, the sporadic participation of clients in each training round limits the data

available for clustering algorithms to a subset of the entire client population at any given

time. Traditional clustering algorithms, such as K-means and KNN, require a complete pass

of the population, rendering them inapplicable here. Mini-batch clustering algorithms [139],

on the other hand, operate on small batches of the population each round, maintain a running

centroid for cluster assignments. Nonetheless, this strategy cannot directly be applied in our

case because we only know the gradients grm(xPmr) and not the raw data xP . Further, since

the gradient grm(·) depends on the initial model of round r and client data - both unknown

and different across rounds and cohorts. These complexities preclude us from maintaining

absolute cluster centroids over successive rounds in a straightforward manner, making naive

mini-batch clustering infeasible.

Algorithm 2 outlines how Auxo starts with one cohort for the entire CL population, and

then adaptively identifies cohorts based on gradients of mini-batch clients. After using K-

means to initialize the cluster prototype (Line 13), in each round, Auxo collects the training

feedback from the clients and assigns clients to their closest clusters (Line 15). Meanwhile,

Auxo incrementally refines cluster centers based on the gradients of newly assigned clients

in each round (Line 16). With repeated cluster updating and clients assignment, Auxo can

effectively identify the clusters at scale (Line 17). Each new cohort starts with the parent

cohort model weights with the same architecture, performs conventional CL steps separately,

and converges to different model weights. Once discernible clusters emerge and certain

partition criteria are fulfilled (e.g., enough participants left for model convergence after

partition), Auxo decides to spawn cohorts based on these pre-identified clusters (Line 18)

and train cohort models separately within their corresponding client groups. At runtime,

Auxo adaptively decides the right time and the right number of cohorts to partition to find

the sweet spot of model performance and the resource consumption of training multiple

cohorts (§ 3.4.4).

3.4.3 Cohort Selection

Although clustering captures the membership of already-identified clients, doing so for a new

client is unkown a priori, since we neither have access to client data nor have absolute cohort

centers that can inform a new client to choose the closest cohort. This challenge is further

amplified by the large training population, wherein more CL clients participate in model

training for the first time than not.

To address this, Auxo adopts an exploration-exploitation strategy to efficiently identify

the cohort membership for new participants. This allows us to first randomly assign a new
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client to a cohort. After getting the feedback on how well the client fits in that cohort, Auxo

attempts to identify a more suitable cohort for it the next time it participates again.

Auxo uses reward-based decaying ε-greedy selection [147] to help the client find the best-

fit cohort (Line 9). With an aim to maximize the expected reward for each client, there is a

1−ε probability of selecting a cohort with a maximum reward and a ε probability of selecting

cohorts randomly, where ε ∈ [0, 1] is the exploration factor that decays over time to account

for the latest information. Intuitively, smaller gradient divergence compared to the members

within the explored cohort means a better fit and gives a higher reward. Hence, Auxo

calculates the relative divergence between the client gradients and the explored cohort center.

This is done by first estimating the cohort center via averaging the client gradients within

the cohort Prm,Known, to be D = ||grm(xPrm)−grm(xPrm,Known)||2, where grm(xPrm,Known) represents

the estimated cluster centers for cohort m. Next, we take the popular approach to identify

outlier clients [10]. Specifically, we consider clients as outliers if their distance to the cohort

center exceeds the threshold, which is calculated as the sum of the mean and the standard

deviation of D, denoted as avg(D) + std(D). If the client gradient distance to the cohort

center is larger than this threshold, this client is not considered as the cohort member. As

such, the instant reward becomes ∆R = 1− 1
avg(D)+std(D)

D, where the client with a negative

∆R would be considered as an outlier of the cohort. Then, Auxo updates the reward between

each client and its explored cohort with a decay factor γ as RPrm,m = γ∗∆R+(1−γ)∗RPrm,m,

γ=0.2 by default in popular exploration-exploitation designs.

Efficient cohort exploration. During exploration, there may exist multiple cohorts for a

client to try out with. To improve the searching efficiency and save device training resources,

during both training and deployment, Auxo enables a new client to perform a binary search

to find the most appropriate cohort by predicting the rewards for other unexplored cohorts

m′ through function ExploreReward() (Line 27): RPrm,m′ +=
RPrm

d(m,m′)+1
,∀m 6= m′.

The intuition behind the cohort search is that the client may perform similar to or receive

similar rewards from the cohorts that are closer/similar to the previously explored ones, and

vice versa. To find out the cohort similarity, we first define the distance (d) between two

cohorts to be the distance to their lowest common ancestral cohorts based on the hierarchical

cluster relationship among cohorts. Given an explored cohort m and the reward ∆Rm for a

participant, Auxo calculates the distance d and updates the rewards for unexplored cohorts

to be inversely proportional to their distance. For example, if a client receives a negative

reward for the chosen cohort, then he is more likely to explore another furthest cohort with

higher reward given by ExploreReward() next time.

Taking Figure 4.3 as an example, a new client a explores Cohort0.0.1 and receives the
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Figure 3.7: Reward update based on the hierarchical structure among all cohorts.

corresponding feedback rewards -3. Then, with the intuition that the client may have similar

performance on a closer cohort, Auxo calculates the distance between Cohort0.0.1 and other

cohorts. As shown in Table 4.3, Auxo updates the rewards to be inversely proportional to the

cohort distance dm′ : ∆Rm′ = ∆R
dm′+1

Since Cohort0.0.1 and Cohort0.1 have a larger distance

between them, Cohort0.1 ends up with a relatively higher reward and has higher probability

to be explored by client a in the future.

3.4.4 Cohort-Based Training

While clustering reduces heterogeneity within a cohort, generating a larger number of cohorts

may dilute available resources for each individual cohort when operating under fixed training

resources. Consequently, this leads to a new trade-off between resource efficiency and model

convergence. As shown in Figure 3.3, generating more cohorts has diminishing returns

in terms of heterogeneity. In a setting where total training resources are fixed, allocating

resources to a larger number of cohorts implies fewer resources for each, which may negatively

affect model convergence. Conversely, having too few cohorts is insufficient for adequately

addressing intra-cohort heterogeneity. Therefore, Auxo faces the challenge of optimally

determining both the number of cohorts and the timing for their creation to balance resource

efficiency and model performance effectively.

Intuitively, the decision to generate new cohorts should be based on the extent of client

heterogeneity and the available training resource budget post-partition. When client hetero-

geneity is significant and the resource budget is sufficient, the creation of additional cohorts is

warranted to further reduce client heterogeneity. On the other hand, when these conditions

are not met, the creation of new cohorts should be deferred.

We next provide analytical insights to ground our strategy. Prior works in ML theory [75,

93, 180, 127] have shown that the convergence rate of CL training is largely dominated by
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heterogeneity. We start by analyzing the relationship between heterogeneity and training

resources in theory. Inspired by the convergence analysis of FedAvg [75], we establish the

following Lemma.

Lemma 1. If the population and training resources are partitioned into up to K cohorts, to

theoretically achieve better model convergence, intra-cohort heterogeneity should be reduced

by
√
K times when the training resource |P| is larger than α

√
|P0|
J2
0

. α is a constant setting

that elaborates the relationship between model convergence and training resources.

From Lemma 1, we notice that the number of generated cohorts rely on the expected

reduced heterogeneity and a lower bound of training resources. As such, Auxo actively

monitors the gradient divergence within each cohort at runtime to estimate the potential

heterogeneity reduction.

When a sufficient decrease (e.g., 1√
K

) in intra-cohort heterogeneity and ample post-

partition training resources are detected, Auxo autonomously partitions the population into

a maximum of K cohorts, allotting equal training resources to each. This strategy theoreti-

cally enhances model convergence through cohort-based training in Auxo. As for some CL

datasets with larger heterogeneity, CL developers can further improve model convergence by

dynamically raising the resource budget to allow generating more cohorts.

In addition to deciding the right number of cohorts, the time to cohort partition is also

critical to model convergence. As cohort partitioning may reduce the unique training data

for each cohort model, the trade-off between model bias and variance can be affected by

the time of partition. On the one hand, hard partitioning of the entire population at the

beginning could reduce heterogeneity, but it could also reduce the amount of unique training

data for each cohort model, leading to poor model generalizability. On the other hand, late

partitioning exposes the model to diverse training data but leads to worse model variance

due to high heterogeneity. These also guide the reuse of identified cohorts to facilitate other

CL tasks.

From the sensitive analysis of cohort partition time (§3.7.4), we found the model conver-

gence is not sensitive to exact partition time as long as cohorts are not partitioned at the

beginning or the end of the training. We report more results about the effect of partition

time on model convergence in Section 3.7.4.

Finally, the start time of gradient-based clustering can impact the efficiency of the process.

In the early stages of training, gradients are often large and may not adequately capture the

distributional features of the data. However, as the model approaches convergence, the

gradients become more informative indicators of data similarities. Thus, it is crucial for

Auxo to judiciously select the optimal starting point for clustering so as not to delay the
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cohort identification. Detailed results discussing the effect of the clustering start time on

model convergence can be found in Section 3.7.4.

3.5 Auxo System Design

In this section, we discuss how to design a practical and robust system on top of the clustering

algorithm under real-world challenges.

3.5.1 Distributed Auxo

As the scale of training grows, the server faces more server challenges for tremendous storage,

fault tolerance, and client privacy in order to maintain the cohort and client information.

Thus, Auxo designs a solution to use a soft-state server that ofCLoads cohort-related infor-

mation to individual clients to mitigate these challenges. In this subsection, we describe how

to implement the proposed clustering algorithm in a distributed fashion, while achieving the

same objective.

Firstly, we introduce affinity message, which is a lightweight message containing all nec-

essary state information needed to identify cohorts in a distributed fashion. Affinity message

consists of two pieces of information between a client and a cohort to enable efficient state

transmission: (Reward R ∈ R, Cluster index L ∈ [0, K)). The reward implies how well the

client fits for this cohort. The cluster index expresses the client’s cluster membership within

this cohort and is used to indicate its future cohort index.

Through exchanging affinity messages between different components, Auxo encourages

similar clients to collaborate more in a distributed fashion. As shown in Figure 3.8, we next

describe a. how a cohort informs its relationship with its participants, b. how clients request

for their preferred cohort based on the affinity feedback and c. how the cohort coordinator

matches different requests.
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Affinity Feedback At the end of each round, every cohort computes the affinity feedback

to inform participants about their relationship with the cohort. These affinity feedback

correspond to the clustering results returned by Algorithm 2 Line 6 (reward R) and Line 17

(cluster index L). These clustering results would be sent back to the participants respectively

in the format of affinity messages, which informs the participant about whether the cohort

is a good fit and which sub-cohort to select after partitioning.

Client Reaction After receiving the affinity feedback from the cohort, the client would

update its affinity records itself based on the equation in Algorithm 2 Line 22- 27 and copy

the cluster index directly. Following the same decaying ε−greedy selection method (§3.4.3),

clients select the cohort to train by themselves. Then, clients ready to participate would

submit the corresponding affinity request to the cohort coordinator.

Request Match After receiving the affinity request, the cohort coordinator matches each

client to the cohort it requests. Note that only the leaf cohort in the cohort tree would be

returned as it conducts actual CL training inside. The requested cohort may not be the leaf

cohort because some clients may not be aware of the cohort partitioning, which is not yet

transparent to all clients. In this case, the cohort coordinator should assist clients to select

their best-fit cohort through finding the closest leaf cohort indicated by the requested cohort

and cluster index in the affinity message.

After finding a proper cohort, cohort coordinator would forward this affinity request to the

corresponding cohort to initiate traditional CL rounds. Moreover, these forwarded affinity

requests provide each cohort with all necessary input to conduct the clustering algorithms.

Thus, after receiving the gradients from its participants, each cohort is able to run the

Algorithm 2 independently to compute the aforementioned affinity feedback.

3.5.2 Resilient Auxo

Fault Tolerance Auxo enables fast recovery to minimize the impact on the model train-

ing. Upon a cohort process failure in the server, the cohort coordinator spawns a new

cohort process. The new cohort loads the model from the latest checkpoint and restarts the

incomplete round.

If the cohort coordinator fails, cohort processes would continue their current independent

CL training and wait until a new cohort coordinator to be re-spawned. Clients checking in

within that recovery period would be ignored.

Finally, Auxo is resilient to client failures just like traditional CL by design. Most client

failure handlers, which are orthogonal to Auxo, can be applied directly. In addition, a failed
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client, who may lose its own affinity records, would restart exploring again. We empirically

show that Auxo can tolerate a certain amount of such client failures while continuing to

benefit the CL training (§3.7.5).

Robustness Based on Auxo’s threat model, Auxo can naturally cooperate with some ex-

isting privacy-preserving approaches [44, 110, 111] to address potential threats from both

the server and clients. To handle the honest-but-curious server, Auxo can be used with local

differential privacy (LDP), which is used to provide user-level privacy guarantees. Since dif-

ferential privacy is immune to post-processing [42] and Auxo’s clustering is post-processing,

Auxo incurs no additional privacy loss.

To handle a small fraction of unreliable clients [15, 21], Auxo can be used with existing

adversary-resilient solutions [31, 144]. For Auxo-specialized adversaries, such as fake affinity

requests, Auxo detects anomalies by comparing its position in the cluster with its claimed

affinity (Algorithm 2 Line 6). If a significant discrepancy is detected, Auxo will detect

and blacklist it. In Section 3.7.5, we empirically evaluate Auxo’s robustness under these

scenarios.

3.6 Implementation

We have implemented Auxo as an independent Python library (1, 664 lines) to serve existing

CL frameworks (e.g., TFF [4] and PySyft [118]), and integrated it with FedScale [85] for eval-

uations. Auxo abstracts away the cohort identification and partition so that CL developers

can easily try out their CL algorithms or datasets on top of Auxo without any modifications.

Auxo’s implementation consists of the three components described in Section 4.3: The

cohort coordinator manages and spawns cohort processes, which initiate CL training tasks.

Clients continuously submit their training requests based on their availability and affinity

records. Then, the cohort coordinator takes client training requests as input and forwards the

requests to corresponding cohorts. Each cohort process conducts conventional CL training

with the assigned available clients independently. At the end of each individual round, the

Auxo clustering algorithm runs within every cohort and reports clustering results to each

participant over the network. All training metadata and model weights are checkpointed

periodically for fault tolerance. Meanwhile, the cohort coordinator continuously monitors

the progress of cohorts for resource management and failure recovery.
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Dataset #Clients #Samples

Google Speech [158] 2,618 105K
FEMNIST [34] 3,400 640K

OpenImage-Easy 10,133 1M
OpenImage [1] 13,771 1.3M

Amazon Review [77] 42,031 2M
Reddit [2] 63,058 5M

Table 3.2: Statistics of the six datasets in evaluation.

Task Dataset Model Target Acc. Speedup Acc. Impr.
FEMNIST ResNet-18 82.2% 1.2× 7.3%

MobileNet 56.5% 1.3× 4.8%
OpenImg

ShuffleNet 58.2% 2.2× 5.0%
MobileNet 65.4% 1.4× 3.4%

Image Classification

OpenImg-Easy
ShuffleNet 64.8% 1.2× 4.4%

Amazon Review LR. 65.3% 1.2× 8.2%
Language Modeling

Reddit Albert 7 ppl 1× 0 ppl
Speech Recognition Google Speech ResNet-34 78.5% 1.5× 5.7%

Table 3.3: Summary of improvements of Auxo on time to accuracy and final accuracy. We
target the highest accuracy attainable by YoGi.

3.7 Evaluation

We evaluate Auxo’s effectiveness for six different ML tasks as well as different choices of CL

algorithms. Our evaluation shows the following key highlights:

1. Auxo speeds up model convergence on different CL datasets up to 2.2×, while im-

proving final test accuracy by 3.4%-8.2%. Auxo cooperates with existing CL efforts

(e.g., personalization) and boosts final test accuracy by 2.1%–6.7%. Auxo can mitigate

model bias across devices by 4.8% and 53.8% and improve resource efficiency (§3.7.2).

2. Auxo outperforms existing clustered CL solutions up to 4.8× in time and 5.2× in

resources (§3.7.3).

3. Auxo performs well across a broad range of its parameter settings (§3.7.4).

3.7.1 Experiment Setup

Evaluation environment We use 24 NVIDIA Tesla P100 GPUs on CloudLab [41] to

emulate the large-scale client training in our evaluations. The client data distribution follows
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Figure 3.9: Time-to-Accuracy performance on different dataset. For the language modeling
(LM) task, a lower perplexity is better. The solid line reflects the average test accuracy. The
shaded portion covers the test accuracy performance among all cohorts generated by Auxo.

the real-world partition, where client data can vary in quantities, data, and label distribution.

We use the open-source benchmark FedScale [85] with standardized setup including realistic

device capacity, data, and client availability traces. We report the simulated wall clock time

by relying on these realistic CL system and data traces.

Datasets and models We run three categories of applications with six CL datasets [85] of

different scale factors using real-world partitions, whose statistics are reported in Table 3.2.

The clients for all datasets can check-in with Auxo multiple times following the availability

trace.

1. Speech Recognition: We train Resnet-34 [58] on a small-scale Google Speech dataset

with 35 commands.

2. Image Classification: We train Resnet-18 on small-scale FEMNIST with 62 handwrit-

ten digits to classify. Also, we train ShuffleNet [177] and MobileNet [136] on middle-

scale OpenImage with 596 classes to classify, whereas OpenImage-Easy only has 60

classes.

3. Language Modeling : We train logistic regression (LR) on middle-scale Amazon Review

for ratings prediction, and Albert model [88] on large Reddit for word prediction.
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Figure 3.10: Auxo with different CL algorithms.

These applications are widely used in real end-device applications [165], and these models

are lightweight.

Parameters We follow the standardized experiment and parameter settings in FedScale.

We adopt an over-commitment strategy to mitigate stragglers which allow 25% failures or

stragglers every round as in real CL deployments [23]. We set the number of participants

per round to be 200, the local minibatch size to be 6, and the initial learning rate to be 4e-5

for the Albert model, and 0.05 for other models. And we use the linear scaling rule [51] to

scale the learning rate.

Metrics The time-to-accuracy performance, final test accuracy, and model bias are our key

metrics. We use the cohort member’s test data, which follows the realistic data partition, to

evaluate each cohort model. The test data would be the global test data if we end up with

one global model. For each experiment, we report the average top-1 accuracy based on the

results over 3 runs.

3.7.2 End-to-End Performance

Auxo’s performance on different datasets. We first evaluate Auxo’s performance on

different real-world CL datasets. In the following experiments, we adopt YoGi as the CL

algorithm because it outperforms other CL algorithms most of the time. Table 3.3 summa-

rizes the key time-to-accuracy performance of all datasets, where we tease apart the overall

improvement with statistical and system ones. We quantify the time-to-accuracy as speedup

by Auxo, which measures how many times Auxo can speed up to achieve the target accuracy

compared to the baseline time cost. Figure 3.9 reports the timeline of training to achieve dif-

ferent accuracy, as different cohorts perform CL asynchronously. The shaded portion covers

the test accuracy among all cohorts generated by Auxo.
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We notice that Auxo speeds up the wall-clock time to reach target accuracy up to 2.2×
faster. Moreover, the final accuracy for different datasets is improved by 3.4%–8.2%. The

benefit of Auxo varies over datasets. For most of the datasets, Auxo can achieve significant

final accuracy improvement. Nevertheless, Auxo does not improve Reddit task because the

clients’ texting behavior is similar to each other that makes it hard to identify significant

groups as shown in Figure 3.3. Hence, Auxo decides not to partition into multiple cohorts

to maximize the benefit of clustering in CL training.

Auxo’s performance on different CL algorithms. We then evaluate Auxo’s perfor-

mance on ShuffleNet-OpenImage with different CL Algorithms, which are complementary

to Auxo. We refer to YoGi running atop Auxo as YoGi+Auxo, and similarly for FedProx,

q-FedAvg and PyramidCL+YoGi.

As shown in Figure 3.10, Auxo speeds up the time to reach the target accuracy of baseline

algorithms, from 1.2× to 2.2× faster and improve the final test accuracy by 3%–6.8%.

As for the personalization algorithm FTFA, we adopt the cohort models generated by

Auxo to conduct local training using FTFA on corresponding cohort members. In addition

to faster convergence of the initial model, Auxo also improves the average test accuracy of

FTFA from 63.18% to 67.40% with local fine-tuning.

Auxo’s benefit on resource efficiency. We finally show that Auxo can optimize resource

efficiency on OpenImg dataset by saving 55% training resources. We also account for the

affinity maintaining overhead into the client resource usage, which is around 0.02% of the

total resource consumption.

Auxo’s benefit on model bias. We show that Auxo can also mitigate the model bias due

to smaller intra-cohort statistical heterogeneity. We report the variance of the final accuracy

distributions, the worst and best 10% test accuracy in Table 3.4. Our experiment show that

the variance of test accuracy is decreased for all the datasets by 4.8% and 53.8%.

3.7.3 Clustered CL Comparison

We compare Auxo with four existing clustered CL algorithms CCL, CL+HC, FlexCCL, and

IFCA in terms of three metrics: time-to-accuracy, resource-to-accuracy, and final accuracy.

Since these algorithms do not meet some real-world CL constraints (Table 3.1), we simplify

the settings accordingly.

We compare with CCL in small-scale settings (∼ 100 clients) from the FEMNIST dataset

to meet their full participation assumption. We observe little difference between CCL, Auxo,
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Dataset Setting
Worst 10%

(%)
Best 10%

(%)
Variance

OpenImg Auxo 38 83 267
Baseline 34 79 296

OpenImg Auxo 38 88 234
-Easy Baseline 33 84 273

Review Auxo 50 100 460
Baseline 32 100 995

FEMNIST Auxo 63 97 171
Baseline 60 93 185

Speech Auxo 57 100 479
Baseline 52 100 503

Table 3.4: Summary of improvements on model bias.

and baseline (i.e., no cohorts) in terms of time and resources used due to the absence of

significant clusters within small populations. However, this highlights the need for large-scale

CL settings, where CCL cannot even be applied as it does not support partial participation.

To compare with CL+HC, FlexCCL and IFCA, we conduct experiments with the full

FEMNIST and Amazon Review datasets without the client availability traces to align with

their constraints. As shown in Table 3.5 and Figure 3.11, Auxo achieve better time efficiency

1.4 × −4.8× and better resource efficiency 1.3 × −4.8× compared to the related works

especially for the large-scale Amazon dataset, due to our efficient and scalable algorithm

design. Also, our result for IFCA are consistent with Motley [161].
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Figure 3.11: Comparison with clustered CL (FEMNIST).
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CL+HC FlexCCL IFCA Auxo
Speedup 1.7× 1.3× 0.5× 2.4×
Efficiency 1.6× 1.8× 0.5× 2.4×FEMNIST
Final acc. 5.8% 7.1% 1.3% 9.1%

Amazon Speedup 0.4× 0.4× 0.5× 2.3×
Review Efficiency 0.4× 0.5× 0.5× 2.1×

Final acc. -2.9% -2.7% 0.6% 5.4%

Table 3.5: Summary of improvements over baseline (i.e., no cohorts) in terms of time,
resource and accuracy.
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Figure 3.12: Impact of cluster start time.

3.7.4 Sensitivity Analysis

Impact of different degrees of heterogeneity. We generate different statistical hetero-

geneity by applying affine shift [128] on OpenImage, then we evaluate Auxo with YoGi across

different degrees of statistical heterogeneity. Figure 3.13a reports the final test accuracy as

well as top 10% and worst 10% client test accuracy on different degrees of heterogeneity.

We observe that Auxo can improve model accuracy and mitigate model bias under different

degrees of heterogeneity. Moreover, similar to the previous experiment, Auxo achieves faster

time-to-accuracy performance from 1.2× to 1.8×.

Impact of time to partition. We investigate the impact of different cohort partition

times on the model convergence. As mentioned in Section 3.4.4, the partition time relates

to the trade-off between model generalizability and intra-cohort heterogeneity. As shown

in Figure 3.13b, we choose different partition times with the same cohort composition and

report the test accuracy to time performance on FEMNIST. We observe that cohort-based

training all outperform the baseline experiment with one cohort. However, early partitions

such as FlexCCL and IFCA are worse than intermediate partitions, because it sacrifices

the model generalizability. Similarly, late partition after convergence as CCL does not out-

perform intermediate partition, because it slows down the model convergence to a smaller

heterogeneous population.
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Impact of time to start clustering. We investigate the impact of the clustering

start time on the model convergence. As mentioned in Section 3.4.4, different clustering

start time may affect the clustering accuracy and efficiency. To quantify how well the

gradient similarity correlates with data similarity, we use Pearson correlation coefficient

r =
∑n
i=1(Gi−Ḡ)(Di−D̄)√∑n

i=1(Gi−Ḡ)2
∑n
i=1(Di−D̄)2

, where D and G are pairwise data similarity and gradient sim-

ilarity. As shown in Figure 3.12, the similarity correlation slightly increases over training

rounds, which suggests a slightly later cluster start time.

Impact of the number of cohorts. We investigate the impact of the number of cohorts

generated by Auxo, which relates to the trade-off between training resources and intra-cohort

heterogeneity (§3.4.4). As shown in Figure 3.13c, we observe that the model convergence is

negatively affected once the number of cohorts exceeds 4 under the same resource budget.

By further comparing the reduce of heterogeneity with different number of cohorts indicated

in Figure 3.3, this result verifies that better model convergence can be achieved as long as

the heterogeneity can proportionally compensate the reduced training resources
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Figure 3.13: Sensitivity analysis.

3.7.5 Auxo Resilience

Impact of differential privacy. Auxo is robust to local differential privacy (LDP). LDP

is used to protect user-level privacy by adding Gaussian noise to the client update before

sending it to the server, but it hurts model accuracy. We evaluate Auxo’s performance

under LDP for a learning task on the Amazon Review dataset. To achieve (ε, δ)-differential

privacy, where δ = 10−6 based on the training scale and ε = 2, 4, 8, we set the noise scale

σ = 1.0, 0.77, 0.6. As shown in Figure 3.14a, Auxo can still benefit CL training across

different differential privacy guarantees.
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Figure 3.14: Robustness of Auxo under different scenarios.

Impact of malicious attacks. We investigate the robustness of Auxo by manually in-

volving corrupted clients. Following a popular adversarial ML setting that introduces local

model poisoning [47], we randomly flip the ground-truth data labels for these corrupted

clients. As shown in Figure 3.14b, we introduce different percentages of corrupted clients to

the OpenImg task. We set the percentage of corruption below 15%, which is a practical per-

centage under the real-world setting [47]. We observe that Auxo still improves performance

across different degrees of corruption through identifying malicious clients and eliminating

their interference.

Impact of unstable client. Finally, we show Auxo is robust with unstable clients who

fail to maintain their affinity records, which may result in less accurate clustering results.

We consider loss rates from 0% to 20% and report the corresponding final test accuracy in

Figure 3.14c. We notice Auxo outperforms the baseline across different affinity loss rates.

3.8 Related Work

Distributed Machine Learning Distributed ML in data centers has been well-

studied [106, 113, 174], where homogeneous data and workers are assumed [53]. With the

same training goal, CL raises its unique challenges including the data heterogeneity and

system heterogeneity. As a result, Auxo aims at speeding up the training process through

directly reducing the intra-cohort heterogeneity at scale.

Collaborative Learning CL is a distributed machine learning paradigm [23, 81] with two

key challenges: statistical and system heterogeneity. State-of-the-art CL algorithms try to

tackle these two challenges and optimize different targets including model convergence [127,

90, 87, 179, 99, 94], fairness [89, 91], privacy [25, 130, 131, 132], efficiency [109, 55, 164], and

robustness [89, 54]. However, they underperform in CL because they do not tackle the root
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cause of CL challenges but mitigate the negative effect caused by heterogeneity.

Federated Analytics There has been significant work on geo-distributed data analyt-

ics [64, 84, 153, 123]. They mainly optimize the execution latency [86] and resource effi-

ciency [162, 63]. To further preserve privacy for distributed data, Orchard [132] and Hon-

eycrisp [131] have been proposed to enable large-scale differentially private analytics. He-

len [182] and Cerebro [181] allow multiple parties to securely train models without revealing

their data.

Traditional Clustering Algorithms Clustering algorithms [166, 20] are used in popular

data mining techniques, which usually assume access to all data. However, under CL setting,

it is non-trivial to design a clustering algorithm because of the unavailability of data. Auxo

proposes a clustering algorithm that can be applicable to the CL settings.

CL Client Clustering In order to leverage the nature of clusters in real-world CL dataset,

many algorithms have been proposed to identify the clusters among CL clients. However,

existing clustered CL solutions [137, 50, 26, 39] mainly suffer from scalability and practi-

cality, which are hard to adapt to large-scale, low-participation, and resource-constraint CL

training. Considering all real-world constraints, Auxo build a practical system to identify

cohorts and benefit CL training.

3.9 Conclusion

We presented Auxo, which builds on top of the observation that there exist natural groups

of statistically similar clients (cohorts) in large real-world CL populations. Auxo identifies

cohorts with reduced intra-cohort heterogeneity at scale, addressing heterogeneity-borne CL

challenges at their roots. Auxo proposes an efficient algorithm and practical system that

can be applied under real-world CL constraints to significantly benefit CL training in terms

of model convergence, final accuracy, and model bias.
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CHAPTER 4

Optimizing Resource Sharing in Multi-Job

Collaborative Learning Environments

In recent years, collaborative learning (CL) has emerged as a promising approach for machine

learning (ML) and data science across distributed edge devices. As the deployment of CL

jobs increases, so does resource contention among multiple CL jobs. The ephemeral nature

and resource heterogeneity, coupled with the overlapping resource requirements of diverse

CL jobs, complicate efficient device scheduling. Existing resource managers for CL jobs opt

for random assignment of devices to CL jobs for simplicity and scalability, which hurts job

efficiency.

In this paper, we present Venn, an CL resource manager, that efficiently schedules con-

tended ephemeral, heterogeneous devices among many CL jobs, with the goal of reducing

their average job completion time (JCT). Venn formulates the Intersection Resource Schedul-

ing (IRS) problem to identify complex resource contention among multiple CL jobs. Then,

Venn proposes a contention-aware scheduling heuristic to minimize the average scheduling

delay. Furthermore, it proposes a resource-aware device-to-job matching heuristic that fo-

cuses on optimizing response collection time by mitigating stragglers. Our evaluation shows

that, compared to the state-of-the-art CL resource managers, Venn improves the average

JCT by up to 1.88×. The code is availabile at https://github.com/SymbioticLab/Venn.

4.1 Introduction

Collaborative learning (CL) enables distributed edge devices to perform collaborative ma-

chine learning (ML) without moving raw data into the cloud [24, 125]. CL has been adopted

by many large corporations including Apple, Meta, Google, and LinkedIn to protect user

data privacy while improving user experience. For example, Google adopts CL for a wide

range of applications such as speech recognition [158], healthcare study [135], next-word

62

https://github.com/SymbioticLab/Venn


Server

Computation

Scheduling Delay1

Computation

2 Response Collection Time

Computation

Computation

Update Model

jct.pdf

Figure 4.1: Composition of the completion time of one round of an CL job.

prediction [56, 167], emoji prediction [126], and query suggestion on keyboard [170]. Each

CL training job in practice often requires 1000∼10000 device participants in each training

round and takes 4∼8 days to finish [170]. As the number of CL applications continues to

grow, efficient edge resource management has become the key to fast and resource-efficient

CL.

In comparison to cloud resources, CL resources are not accessible all the time, they

only become available for training when they are connected to WiFi and in charging [24].

Moreover, they are also highly heterogeneous in terms of their hardware capacity, software

versions, and training data availability (§4.2.1). Even when running on the same population,

different CL jobs often compete for different subsets of devices, based on their specific model

characteristics and training objectives. Both of the resource characteristics lead to complex

multi-resource contentions among multiple ongoing CL jobs, where the eligible resources for

each job are not only limited and but also may overlap, contain, or be within those of one

or more other jobs.

However, existing CL research primarily focuses on optimizing the resource efficiency

within a single jobs through client selection [87, 7, 17]. They often ignore the resource

contention among other CL jobs in the cluster and solely optimize the response collection

time by assuming sufficient resources are always available. In practice, however, multiple

CL jobs may run concurrently and compete for a subset of devices, leading to resource

contention [24]. Hence, they miss an important factor to the job completion time (JCT) of

an CL job as dipicted in Figure 4.1, which is the scheduling delay (§4.2.2). Scheduling delay

refers to the time needed to acquire all resources required by the CL job, which is often

prolonged due to resource contention.

With the proliferation of CL in production, large corporations such as Apple [120],

Meta [66], and Google [24] have developed their own CL infrastructures to coordinate mul-

tiple CL jobs at production scale. However, despite low-level differences, these CL resource

managers can all be described simply as random device-to-job matching in various forms.
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We show that such random assignment can lead to higher scheduling delays and response

collection times as more and more CL jobs vie for a shared device population.

In this paper, we present Venn, an CL resource manager that minimizes the average

JCT of multiple CL jobs competing over a large number of heterogeneous devices. First,

Venn addresses the intricate resource contention among CL jobs by formulating it as an

Intersection Resource Scheduling (IRS) problem (§4.4.2), where the resources that one job

contends for may overlap, contain, or be within those resources of other jobs. Venn then

introduces a contention-aware scheduling heuristic that prioritizes small jobs requiring scarce

resources to minimize the average scheduling delay. Second, Venn employs a resource-aware

device-to-job matching heuristic to reduce response collection time (§4.4.3). Together, they

jointly optimize the average JCT for a diverse set of CL jobs operating under dynamically

changing and uncertain resource conditions.

We have implemented and evaluated Venn across various CL workloads derived from

real-world scenarios (§4.5). Compared to state-of-the-art CL resource allocation solutions

[24, 66, 120], Venn improves the average JCT by up to 1.88×.

Overall, we make the following contributions in this paper:

1. We introduce Venn, an CL resource manager designed to enable efficient sharing of

heterogeneous devices across a large number of CL jobs.

2. To minimize the average JCT of CL jobs, we propose a scheduling and matching joint

solution to optimize both the scheduling delay and response collection time.

3. We have implemented and evaluated Venn, along with its scheduling and matching

algorithms, demonstrating improvements in the average JCT compared to the state-

of-the-art across various real-world CL workloads.

4.2 Background and Motivation

4.2.1 Collaborative Learning

CL has been widely adopted by the industry to train ML models on larger and more diverse

on-device datasets without having to copy raw data into the cloud. Example applications

include healthcare study, speech recognition, next-word prediction, etc.. CL is unique both in

terms of resources it uses and jobs that use it, which pose unique challenges for CL resource

managers.

mple of three resource s
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Figure 4.2: CL resources exhibit both high variance in availability and capacity.

Single CL Job’s Resource Management: CL resources often refer to edge devices with

limited capacities, including smartphones, laptops, and Internet of Things (IoT) devices. A

major challenge of resource management in CL comes from CL resource unique characteristics

in terms of availability and heterogeneity.

Dynamic availability. Unlike cloud resources (e.g., GPUs) that are accessible at most of the

time, CL resources only become available for training when certain condtions are met, such

as being charged and connected to WiFi We analyze a real-world client availability trace [85],

which encompass 180 million trace items of devices behavior over a week. Figure 4.2a shows

that the number of available devices (charging and connected to WiFi) changes over time

with diurnal pattern. Hence, there is an inherent scheduling delay for an CL job to acquire

enough participating devices.

Device heterogeneity. The large number of devices involved in CL are heterogeneous in mul-

tiple dimensions including data availability, software version, and hardware capacity, which

leads to varying response time among devices. Figure 4.2b showcases this heterogeneity,

focusing on variations in memory and CPU capacities among edge devices, based on data

from AI Benchmark [68]. It also annotates the minimum hardware requirements needed to

execute three popular on-device ML models within a reasonable time. As jobs may have

different learning objectives, they may compete for different subsets of devices. When more

factors like data availability and software version are considered, these subsets can exhibit

relationships that are inclusive, overlapping, or nested, leading to complex contention pat-

terns.

All of these resource characteristics make the resource management in CL more chal-

lenging by slowing down the training process. Hence, many solutions have been proposed

to optimize the training time, more specifically the response collection time, such as client

65



selection [87, 7, 17], quantization [129], and model aggregation [59].

4.2.2 Multiple CL Jobs’ Resource Management:

To orchestrate multiple CL jobs, several CL resource managers have been proposed with

three primary designs.

1. Apple’s CL resource management [120] is driven by clients, where each client indepen-

dently samples from a list of CL jobs they are able to execute.

2. Meta’s CL resource manager [66] is centralized, where it randomly matches each client

with one eligible CL job.

3. Google’s CL resource manager [24] is driven by jobs, where each job independently

samples from available clients.

Despite the seeming variety in their designs, existing resource managers all boil down to

random device-to-job matching in different forms. Unfortunately, in the absence of extreme

surplus of qualified devices compared to the demand, random matching fail to address the

growing resource contention and yield longer scheduling delay.

4.2.3 Limitation and Opportunities

Limitations of the state-of-the-art. Consider the toy example in Figure 4.3 that com-

pares three scheduling solutions: random matching as specified above, Shortest-Remaining-

Service-First (SRSF) proposed for cloud ML scheduling [53], and the optimal solution. We

assume all jobs arrive simultaneously and clients with different eligibilities become online

constantly over time. Both random matching and SRSF fail to account for resource scarcity

and contention, thereby allocating limited resources (i.e., Emoji clients) to jobs (i.e., the

Keyboard job) that already have an abundance of resources, resulting in an average JCT of

12 and 11 time units. Note that the contention patterns in real-world scenarios are often

more complex and larger in scale than the one presented in this example.

Impact of resource contention Most of existing CL solutions that focus on single-job

optimizations, such as client selection [87, 7, 17], often rely on the assumption that CL

jobs have access to sufficient number of online devices. However, in practice, there could

be multiple CL jobs running at the same time and competing for the same set of devices,

leading to resource contention [24]. This can significantly impact the performance of CL

jobs, such as accuracy and end-to-end training time.
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We analyze the impact of resource contention on CL jobs’ performance in Figure 4.4.

In this experiment, the resource pool is evenly partitioned and managed by each job, who

aims to train a ResNet-18 model for the FEMNIST dataset [34]. We vary the number of

concurrently running jobs to observe its impact. As more jobs share the same device pool, the

available device choices for each job become increasingly constrained, leading to a noticeable

degradation in the round-to-accuracy performance. Hence, evenly partitioned resource pool

for each CL job is no better than a shared device pool in terms of participant diversity.

Breakdown of request completion time While most existing CL efforts, such as quan-

tization [129] and client selection [59], predominantly focus on optimizing response collection

time—–i.e., the time needed to collect a sufficient number of responses—–they often overlook

a critical component: scheduling delay, as depicted in Figure 4.1.

To offer a holistic view of JCT, we dissect its components for a single round request,

under varying degrees of resource contention, as shown in Figure 4.5. Utilizing the same

experimental setup as in Figure 4.4, we quantify both the average scheduling delay and

response collection time with random device-to-job matching during one round of training

and testing. The shaded regions cover the duration for each individual job. As our results in

Figure 4.5 indicate, scheduling delay can significantly impact overall JCT, especially when

resource supply falls short of demand.

4.3 Venn Overview

Venn serves as a standalone CL resource manager that operates at a layer above all CL jobs,

and it is responsible for allocating each checked-in resource to individual jobs. Figure 4.6

provides an overview of Venn’s workflow, along with its role in the CL job’s lifecycle.

In each execution round, an CL job submits resource requests to Venn, specifying its

device requirements and associated resource demands ( 0○). Devices continuously check in

with Venn as they become available over time ( 1○). Based on the real-time resource demand

and supply, Venn generates a resource allocation plan to assign one CL job to each checked-in

device ( 2○), until the job’s demand is satisfied. Upon receiving the task assignment from

Venn, each device adheres to the allocation plan and participates in the corresponding job

( 3○). The device then retrieves the computation plan from the job and performs on-device

computation [103, 36] ( 3○ and 4○). Finally, the device may either report the training result to

the corresponding job upon completion, or drop off mid-process due to availability dynamics

( 5○).

Note that Steps 3○ through 5○ adhere to conventional CL protocols between individual
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CL jobs and devices. Venn’s primary role is in optimizing the job-to-device assigning phase,

denoted by 2○. We elaborate more detailed division of tasks in Appendix .

4.4 Resource Scheduling in Venn

In this section, we first introduce the problem statement (§4.4.1). We then develop our

scheduling algorithm in two steps: establishing the job scheduling order to minimize the

scheduling delay (§4.4.2) and determining the device-to-job matching to co-optimize the

response collection time (§4.4.3). Then, we discuss additional enhancements for real-world

deployments (§4.4.4).

4.4.1 Problem Statement

Given a collection of CL jobs—along with their device requirements and resource demands—

and a set of heterogeneous devices that arrive and depart over time, Venn should efficiently

assign devices to CL jobs in order to reduce the average job completion time (JCT). The

scheduling problem can be mathematically modeled as a multi-commodity flow (MCF) prob-

lem with integer constraints, where each CL job is modeled as a distinct commodity and

each device serves as an intermediate vertex between the source and sink of its correspond-

ing eligible CL job. Then the goal of this integer MCF problem is to minimize the average

JCT of jobs, which is known to be NP-hard [45]. Even for its linear approximation, the

time complexity is exacerbated by the planetary scale of devices involved and diverse de-

vice requirements from jobs, making existing solutions computationally infeasible. We now

formally define such resource scheduling problem.

Problem Definition. Assume we have m jobs J = {J1, J2, ..., Jm} with their resource

demands D = {D1, D2, ..., Dm}. Let S = S1 ∪ S2 ∪ ... ∪ Sn be the available device set,

where Sk is the eligible device subset in S that satisfies the device specification of job Ji,

i.e., f(Ji) = Sk. The goal is to match each checked-in device s ∈ Sk with one job Ji, where

f(Ji) = Sk, ∀s ∈ S, in order to minimize average JCT, which consists of scheduling delay

and response collection time.

Tradeoff between scheduling delay and response collection. Jointly optimizing

scheduling delay and response collection time is non-trivial. Intuitively, to reduce the average

scheduling delay, it is desirable to promptly assign each device upon check-in to one eligible

job. On the other hand, since the response collection time is usually determined by the final

68



responding device among the target number of participants, it can be minimized by miti-

gating stragglers and cherry picking ideal devices to jobs. However, such an approach takes

a longer time to acquire a certain number of qualified devices, leading to longer scheduling

delay.

At its core, Venn aims to find a sweet spot in the trade-off in order to optimize average

JCT. Specifically, we decouple the CL resource allocation problem as following two questions:

1. How to decide the CL job scheduling order in order to minimize the average scheduling

delay? (§4.4.2)

2. How to match devices with CL jobs in order to minimize average response collection

time while also reducing average JCT? (§4.4.3)

Algorithm 3 Intersection Resource Scheduling

Inputs: Job Groups G, Devices S
Output: Resource allocation for each job group

1 for all Gj in G do
2 Sort Ji by Di in ascending order, ∀Ji ∈ Gj . Sort within job group

3 S = ∪nj=1Sj
4 Sort Gj by |Sj| in ascending order, ∀Gj ∈ G . Generate initial allocation
5 for all Gj in G do
6 S ′j = S ∩ Sj, S = S \ S ′j
7 Sort Gj by |Sj| in descending order, ∀Gj ∈ G . Allocate resource
8 for all Gj in G do
9 if |S ′j| > 0 then

10 for all Gk ∈ G : |Sk| < |Sj|, Sk ∩ Sj 6= ∅ do
11 m′j,m

′
k = get-queue-len()

12 if
m′
j

|S′
j |
>

m′
k

|Sk|
then

13 S ′j = S ′j ∪ (Sj ∩ Sk)
14 S ′k = S ′k − S ′j
15 else
16 break
17 return {Gj[0], S ′j},∀j ∈ [1, n]

4.4.2 Intersection Resource Scheduling (IRS)

We now tackle the first question, minimizing the average scheduling delay. Directly matching

jobs to devices can be computationally expensive, especially when dealing with the immense

scale of devices and jobs. The challenges posed by this problem are not solely due to its
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scale; they are also compounded by the diverse resource requirements of CL jobs. Their

various requirements introduce intricate resource contention patterns, further complicating

the scheduling.

To this end, Venn introduces the Intersection Resource Scheduling (IRS) problem to ac-

count for this resource contention. Basically, each CL job Ji ∈ J may compete for a subset of

devices Sk ∈ S, denoted as f(Ji) = Sk, where these resource subsets can exhibit relationships

that are inclusive, overlapping, or nested. We created an integer linear programming (ILP)

formulation to optimally allocate resources to minimize scheduling delay (Appendix C.2)

and propose a heuristic to tackle the problem.

To tackle the scale of devices and jobs, Venn aims to determine a job scheduling order,

where each checked-in device is assigned to the first eligible job in the order, rather than

scattering resources across multiple jobs. Such a fixed job order can minimize the scheduling

delay while reducing computational complexity.

With the objective of determining a job scheduling order, Venn first groups jobs J into

Resource-Homogeneous Job Groups G = {G1, G2, ..., Gn} by their resource requirements,

where each job group Gj = {Ji|f(Ji) = Sj,∀Ji ∈ J}mji=1 contains all jobs with the same

resource requirement. Venn addresses the problem using a two-step approach, with each

step occurring at a different level of scheduling granularity, as outlined in Algorithm 3:

(i) Determining the job order within a job group to optimize local resource scheduling

(§4.4.2.1). (ii) Then deciding how to merge the job order across job groups to ensure

global scheduling efficiency (§4.4.2.2). Venn invokes Algorithm 3 on job’s request arrival

and completion. By breaking down the overall problem into two steps, we further reduce

the problem’s complexity without affecting the scheduling efficiency. We provide theoretical

insights to show the effectiveness of this problem decomposition in Appendix C.3.

4.4.2.1 Intra Job Group Scheduling

Within each job group that shares the same device specifications, Venn prioritizes jobs based

on their remaining resource demand (Algorithm 3 line 2). This ordering strategy aims to

minimize the intra-group scheduling delay. Prioritizing jobs with smaller remaining resource

demands has been shown to be effective in similar scheduling problems [138]. We choose this

locally optimal scheduling strategy with the observation that it aligns well with the goal of

achieving a globally optimal scheduling order. By default, the remaining resource demand

refers to the needs of a single request within one round. However, it can also encompass the

total remaining demand for all upcoming rounds, provided such data is available.
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4.4.2.2 Inter Job Group Scheduling

Addressing the scheduling problem across multiple job groups introduces an additional layer

of complexity due to the intricate patterns of resource contention. Traditional scheduling

algorithms, such as Random Matching and Shortest Remaining Service First (SRSF), are

not designed to account for resource contention across job groups, leading to poor average

JCT.

An effective scheduler should recognize and adapt to the resource contention patterns

among jobs. At a high-level, it should prioritize jobs with scarce resources, i.e., those with

stringent device requirements and limited eligible resource options, to avoid being blocked

by jobs with more abundant resources. Additionally, when a particular resource type is in

high demand, the scheduler should judiciously allocate intersected resources to the job group

with a longer queue, as this group contributes more significantly to the average scheduling

delay.

To achieve this, Venn allocates the intersected resources across different job groups based

on two factors related to average scheduling delay:

1. Amount of eligible resources allocated : the job group with smaller amount of eligible

resources may have longer scheduling delay under the same condition.

2. Queue length: the job group with a longer queue length contributes more to the average

scheduling delay as more jobs are waiting for the same type of resources.

Algorithm 3 outlines the steps Venn takes to allocate the current resource across job

groups. First, Venn initializes resource allocation among job groups by starting to allocate

resources to job group with most scarce resources (line 4). This results in an initial allocation

plan with no resource sharing across job groups (lines 3–6), setting the stage for subsequent

cross-group allocations.

To determine how to allocate intersected resource across job groups, Venn greedily evalu-

ates whether a job group with more abundant resources should acquire intersected resources

from groups with scarcer resources with the objective of minimizing the average scheduling

delay. This evaluation starts with the job group possessing the most abundant resources

(line 7). If the resources allocated to this group remain unclaimed by other groups (line 9),

Venn will decide how much resources from subsequent job groups should be allocated to

it. Specifically, Venn prioritizes job groups with longer queue lengths and fewer allocated

resources, guided by a ratio that balances the number of affected jobs against the amount

of allocated resources (line 12). If this ratio
m′
j

|S′
j |

is larger than the one for the target re-

source group
m′
k

|S′
k|

, Venn reallocates resources accordingly (lines 13–14). Otherwise, the algo-
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rithm ceases to allocate additional resources to the current job group from remaining groups

(line 16). The reason is that if this job group needs more resources, it should first take the

resources from job groups with relatively abundant resources.

Function get-queue-len() (line 11) would return the number of jobs m′ whose JCT

would be delayed by potential group prioritization. For example, the affected queue length

m′ may contain jobs from other job groups that have been deprioritized previously. An

easier way to approximate m′ is to use the group queue length. If intersected resources have

been decided to be allocated to job group Gj over Gk, Venn accumulates and updates their

current resource allocation S ′j, S
′
k and queuing length m′j (line 13–14).

The time complexity of Algorithm 3 is max(O(m logm), O(n2)), where m is the number

of ongoing jobs and n is the number of job groups. We illustrate the theoretical insight

behind the scheduling algorithm in Appendix C.4 to illustrate the effectiveness of Venn’s

approach.

4.4.3 Device Matching

Now we focus on minimizing the response collection time, a significant contributor to the

overall JCT, particularly when resource contention is low. Existing cluster-level device-to-

job matching solutions, either stick to a certain job order such as FIFO and SRSF, or match

devices without a strategic algorithm such as random match, where none of them optimizes

the job response collection time.

Response collection time is usually determined by the last successfully responding devices.

Hence, it can be reduced by allocating devices with similar higher capacity to the CL job.

Meanwhile, these high-end devices have lower probability to fail due to their quick task

execution.

However, as mentioned in Section 4.4.1, there is trade-off between scheduling delay and

response collection time. Intuitively, with limited device influx, priority should be given

to minimizing the scheduling delay, which dominates the average JCT. On the other hand,

with sufficient device influx to fulfill a job request within a short period, we should con-

sider minimizing the response collection time while obeying the scheduling order given by

Section 4.4.2.

To this end, we propose a resource-aware tier-based device-to-job matching solution to

reduce the response collection time for each job as illustrated in Algorithm 4.

The matching algorithm is activated only for jobs that are currently served, as scheduled

by Algorithm 3. For each such job, Venn partitions the eligible devices into V tiers based on

their hardware capabilities, where V denotes the granularity of this partitioning. If a job has
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Algorithm 4 Device Matching

Input: Jobs Ji, Devices S ′j ∈ V enn− SCHED(G,S)
Output: Matched jobs and devices

1 S = {S1, S2, ..., SV } . Evenly partition devices
2 gv = tv

t0
,∀v ∈ [1, V ] . Response time speed-up

3 ci = tresponse
tschedule

. Assign tiers in a rotating manner

4 u = randint(0, V )
5 if V + gu × ci < ci + 1 then
6 Update S ′j = S ′j ∩ Su . Assign tier u devices to Ji

7 return {Ji, S ′j}

been served before, Venn adaptively sets the tier partition thresholds based on the hardware

capacity distribution of the devices that participated in earlier rounds. Otherwise, Venn

forgoes tier-based matching and profiles the devices allocated to the job’s current request to

inform future device tier partitioning.

For each served job request, Venn randomly selects a device tier, denoted as Su, to the

job (Algorithm 4 line 4). This randomized tier assignment aims to expose each CL job

to a diverse set of devices, rather than confining them to high-end devices. Given that

the response collection time is determined by the slowest responding participant, tier-based

assignment does not adversely affect this metric.

As illustrated in Figure 4.7, while tier-based matching may increase the scheduling delay

by a factor of V ≥ 1, it can concurrently reduce the response collection time by a factor of

g ≤ 1. The algorithm proceeds to perform such tier-based device-to-job matching for the

job Ji only if its JCT can be reduced, i.e., 1 + ci > V + cigu (line 5). If the condition holds,

Venn allocates device tier Su to the job, effectively updating the set to S ′j ∩ Su. Meanwhile

the leftover device tiers would be allocated to subsequent jobs in the job group, maximizing

the utilization of available resources.

To determine the response time speed-up factor g for tier-based matching, we note that

the device response time distribution adheres to a log-normal distribution [156]. We use the

95th percentile as the statistical tail latency to account for the overall response collection

time, thereby excluding failures and stragglers. Venn profiles and estimates the response

collection time for each device tier v ∈ [1, .., V ] and subsequently computes the speed-up

factor gv = tv

t0
relative to a non-tiered scenario (line 2).
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4.4.4 Enhancements

Dynamic Resource Supply As shown in Figure 4.2a, the total available CL resources

change significantly over time. To address this, Venn continuously records each device eligi-

bility through a time-series database. This database is then queried for resource eligibility

distribution from the past time window. However, relying solely on momentary eligible re-

source rates for input into the scheduling algorithm is inaccurate. This is primarily due

to the varying resource arrival patterns, as demonstrated in Figure 4.2a. Given that CL

jobs often span multiple days and resource availability typically follows a diurnal pattern, a

more accurate approach is to use the average eligible resource rate over a 24-hour period as

a representative metric for each job’s eligible resources. As a result, the scheduler can be-

come both farsighted and robust, effectively accommodating the dynamic nature of resource

availability.

Starvation Prevention Our heuristic can lead to larger CL jobs being starved due to the

preference given to smaller jobs. This is not acceptable especially when the jobs are initiated

by different CL developers who require performance guarantees. Venn grants fairness to jobs

to avoid such starvation. Specifically, our goal is to guarantee that the scheduling latency

of a job Ji is no worse than fair sharing, which is defined as Ti = M ∗ sdi, where M is the

number of simultaneous CL jobs and sdi represents the JCT without contention. Then, we

adjust each job demand to be d′i = di × ( ti
Ti

)ε to ensure fairness within a job group, and

adjust each group queue length q′j = qj × (

∑
Ji∈Gj

Ti∑
Ji∈Gj

ti
)ε to ensure fairness across job groups. ti

is the time usage of job Ji at the moment and ε ∈ [0,∞) is a fairness control knob. When

ε = 0, the algorithm is identical to the one in Section 4.4.2. As ε→∞, the fairness multiplier

dominates the scheduling, resulting in maximum fairness. We show that Venn improves JCT

over its counterparts with our starvation design (§4.5.5).

4.5 Evaluation

In this section, we evaluate the effectiveness of Venn through event-driven simulation and

testbed experiments. Our key takeaways are:

• Venn speeds up the average JCT by up to 1.88X without affecting the model accuracy,

compared to the state-of-the-art across various real-world CL workloads (4.5.2).

• Venn outperforms its counterparts through intelligent job scheduling and device-to-job

matching using different design components (4.5.3).
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• Venn ’s benefits are robust under a wide range of CL workloads and environment setups

(4.5.5).

4.5.1 Experiment Setup

Testbed To rigorously evaluate Venn, we employ a two-pronged approach. First, we have

developed a high-fidelity simulator that replays client and job traces, effectively emulating

the dynamics of the scheduling environment for large-scale evaluations. Second, we deploy

real CL systems to execute actual CL jobs at a smaller scale of devices.

CL Resources: To faithfully emulate heterogeneous device runtimes, network throughput,

and availability, we use device traces from FedScale [85] and AI Benchmark [68], as depicted

in Figure 4.2 and Figure 4.8a. Each unique device trace is limited to one CL job per day for

realism.

CL Jobs: Our focus is on synchronous CL jobs [170], where each successful training round

requires a minimum of 80% target participants to report back within a deadline, which is set

to be 5min - 15min depending on the round demand. To assess the generalizability of Venn,

we curate a diverse set of CL jobs drawn from diverse applications [167, 170, 56, 126, 158, 135],

whose resource demand is depicted in Figure 4.8b. In the real CL experiment, each job aims

to train a ResNet-18 [58] and MobileNet-V2 [136] on FEMNIST dataset.

Workloads: Our evaluation includes five workload scenarios that sample differently from

the job trace in Figure 4.8b to rigorously evaluate Venn’s performance. Even: Sampled from

all jobs, which is the default trace. Small: Uniformly sampled only from jobs with below-

average total demand. Large: Uniformly sampled only from jobs with above-average total

demand. Low: Uniformly sampled only from jobs with below-average demand per round.

High: Uniformly sampled only from jobs with above-average demand per round. Default

simulation and real-world workloads contain 50 and 20 jobs, respectively. Jobs arrive via a

Poisson process with a 30-min average inter-arrival.

Device requirements are stratified into four categories based on the CPU and memory

capacities (Figure 4.8a) to create various resource contention pattern where the eligible

resources for each job may overlap, contain, or be within the eligible resources of other

jobs. By default, each job is randomly mapped to one category among General resources,

Compute-Rich resources, Memory-Rich resources, High-Performance resources.
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FIFO SRSF Venn

Even 1.38× 1.69× 1.87×
Small 1.48× 1.68× 1.78×
Large 1.64× 1.57× 1.72×
Low 1.55× 1.66× 1.88×
High 1.42× 1.41× 1.63×

Table 4.1: Summary of improvements on average JCT over random matching on different
CL workloads.

Baselines We compare Venn with FIFO, SRSF, and an optimized random matching. Both

Venn and SRSF are agnostic to the total CL job rounds. Random matching algorithm is

supposed to match one eligible job to each device at random. However, to reduce its round

abortion rate under contention, we optimize it to schedule jobs in a randomized order,

thereby setting a more challenging baseline. Note that we only run Venn with the starvation

prevention strategy in Section 4.5.5.

Metrics: Our primary performance metrics include the average job completion time (JCT).

Note that while Venn does not explicitly optimize for CL job accuracy, it does not adversely

affect it either.

4.5.2 End-to-End Performance

Venn achieves better average JCT Improvement. We assess the performance of

different scheduling algorithms by evaluating its performance over different workloads. We

report the average JCT speed-up for each scheduling algorithms compared to the random

scheduling in Table 4.1. We observe that our scheduling algorithm consistently provides

stable improvements in the average JCT across various workloads, which underscores the

robustness of Venn.

Venn achieves faster convergence without affecting accuracy. We report the final

model test accuracy of CL jobs under different schedules with the help of our CL system at

a smaller experiment scale. As shown in Figure 4.9, we observe that Venn does not affect

the final model test accuracy but speeds up the overall convergence process.

Venn has negligible overhead. We emulated a large number of CL jobs and groups

to evaluate the scheduler’s scalability. Our results in Figure 4.10 demonstrate that the la-

tency incurred by one-time triggering for scheduling and matching remains low, even with a

substantial increase in job and group numbers. This can be attributed to its time complex-

ity max(O(m logm), O(n2)), where m, n are the numbers of ongoing jobs and job groups,
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25th 50th 75th
Even 11.5× 7.2× 5.6×
Small 6.8× 5.2× 4.3×
Large 3.7× 2.9× 2.7×
Low 11.6× 7.5× 4.7×
High 5.1× 3.3× 3.1×

Table 4.2: Breakdown of average JCT improvement across jobs with lowest 25%, 50%, and
75% of total demands. Venn benefits more on smaller jobs.

General. Compute. Memory. High-perf.
Even 1.5× 7.2× 5.3× 3.9×
Small 0.9× 6.0× 2.8× 2.6×
Large 0.9× 3.7× 1.8× 2.6×
Low 0.8× 3.4× 2.1× 8.7×
High 0.8× 2.2× 2.2× 5.6×

Table 4.3: Breakdown of average JCT improvement across jobs that ask for General re-
sources, Compute-rich resources, Memory-rich resources and High-performance resources.
Venn benefits more on jobs that ask for scarcer resources.

respectively.

4.5.3 Performance Breakdown

We present a performance breakdown of Venn, which consists of two parts: a job scheduling

algorithm that determines the job order to minimize the scheduling delay, and a device-to-job

matching algorithm to reduce the response collection time. We evaluate the performance of

Venn with only the scheduling algorithm (Venn w/o matching), Venn with only matching al-

gorithm and FIFO (Venn w/o scheduling), and Venn with both algorithms (Venn). We show

the improvement of the average JCT over the default random scheduling for each component.

As shown in Figure A.3, the tier-based device-to-job matching algorithm primarily benefits

low workload where the resource contention is small, which is aligned with our original design

intention. The reason is that when resource supply is sufficient, the response collection time

would dominate the JCT, which can be optimized by our matching algorithm.

To analyze the impact of Venn on different types of jobs, we break down jobs by their

total demands and device requirements (Figure 4.8a), and then analyzed the average JCT

improvement for each type. Table 4.2 and Table 4.3 quantifies how Venn improves aver-

age JCT across varying total demands (25th, 50th, 75th percentiles) and eligibility types

(General, Compute-rich, Memory rich, High-performance ). Notably, jobs with smaller total
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FIFO SRSF Venn

General 1.46× 1.78× 1.94×
Compute-heavy 1.73× 2.08× 2.23×
Memory-heavy 1.68× 2.05× 2.27×
Resource-heavy 1.65× 1.90× 2.01×

Table 4.4: Average JCT improvement on four biased workloads.

demands and scarcer resources benefit the most from Venn.

4.5.4 Case Study on Biased Workload

This section delves into an in-depth analysis of Venn’s adaptability and performance across

four distinct workloads, each characterized by a specific bias in job resource requirements.

These workloads include General, Compute-Heavy, Memory-Heavy, and Resource-Heavy

categories. For example, the Compute-Heavy workload is structured such that half of its

jobs are predominantly geared towards compute-intensive resources, with the rest evenly dis-

tributed across the other three resource types. This setup introduces varied queue lengths in

different job groups, providing a robust testbed for evaluating Venn’s capability in effectively

managing these variations.

The design of these workloads aims to scrutinize Venn’s proficiency in navigating diverse

resource requirement distributions, while maintaining uniformity in job demands as illus-

trated in Figure 4.8b. The outcomes of these experiments are systematically presented in

Table 4.4, offering insights into the algorithm’s performance under each workload scenario.

4.5.5 Ablation Study

Impact of number of jobs: We evaluate Venn with different numbers of CL jobs arriving

over time. As the number of jobs increases, resource contention becomes more pronounced,

highlighting the importance of efficient scheduling under such conditions. We present the

average JCT speed-up with different numbers of jobs in even workload to demonstrate the

effectiveness of our algorithm. As shown in Figure 4.12, Venn consistently provides improve-

ment across various numbers of jobs, with its benefits becoming more pronounced as the

number of jobs increases.

Impact of number of tiers: We evaluate the matching algorithm’s performance across

varying numbers of client tiers, ranging from a single tier to multiple. Figure 4.13 shows

that increased tier granularity enhances device-to-job matching and improves performance.
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However, the gains plateau beyond a certain point, as finer tiers increase scheduling delay

without yielding further reductions in response collection time. Thus, optimizing the number

of tiers is crucial for balancing scheduling efficiency and JCT improvement.

Impact of fairness knob: We incorporated a fairness knob (ε) to strike a balance between

performance and fairness. We tune the value of ε and report the average JCT speed-up

against these values in Figure 4.14a. The results demonstrate that, as ε increases, the JCT

speed-up tends to decrease. As shown in Figure 4.14b, the percentage of jobs that meet the

fair-share JCT increases with the ε, where ε =2 gives 69% of jobs receive their fair-share

JCT. This observation highlights the trade-off between performance and fairness within our

CL resource scheduling algorithm, which can be fine-tuned by adjusting the value of ε.

4.6 Related Works

Cluster Resource Manager. There are many cluster resource managers that schedule

resources with constraints [151, 49, 114]. Existing ML cluster resource managers mainly

focus on managing the stable data-center resources like GPU and CPU [163, 112] in order

to improve JCT, utilization and fairness [122, 30]. Some research delves into GPU-specific

optimizations [53, 173, 67], while others co-design resource managers with the specific char-

acteristics of ML workloads [124, 171]. However, they are mostly designed for data center

and fail to capture the level of availability and heterogeneity of CL resources, nor do they

consider both scheduling delay and response collection time of CL jobs.

CL Client Selector. Several recent works have studied client selection at the single CL

job level. In addition to enforce device requirements including software version, hardware

capacity and data quality, they further cherry-pick clients based on their state, system and

statistical utility [87, 7, 17, 69, 29, 59] to speed up the training. However, they solely focus

on response collection time [95, 96] and overlook the time required to acquire adequate

resources. Additionally, optimizing individual CL job performance is insufficient as the

deployment scale of CL applications continues to grow.

CL Resource Manager. Large companies including Apple, Meta and Google have

proposed their CL infrastructures; however, CL resource management is not their primary

focus. These resource managers simply adopt random device-to-job matching in various

forms, resulting in suboptimal scheduling delays and response collection times.
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4.7 Conclusion

In this paper, we introduce our CL resource manager, Venn, to enable efficient sharing

of a large amount of heterogeneous device resources among multiple CL jobs with diverse

requirements. Venn incorporates a contention-aware job scheduling algorithm and a resource-

aware device-to-job matching algorithm to minimize the average JCT for CL jobs. Our

evaluation over various real-world CL workloads shows that Venn achieves up to 1.88X

improvement on average JCT.
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(b) Random Matching ( ¯JCT=12).
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(d) Optimal ( ¯JCT=9.3).

Figure 4.3: Toy example of three resource schedules across jobs. Job demands and resource
eligibility are shown in the top row. Devices check in at a constant rate. Eligible devices
only for Emoji jobs are marked with blue; all devices are eligible for the Keyboard job. The
label of each client indicates its job assignment. Random Matching and SRSF inefficiently
allocate scarce Emoji-eligible devices to Job 1, which already has sufficient Keyboard-eligible
resources. Conversely, the optimal schedule smartly allocates these scarce resources to Jobs
2 followed by Job 3, thereby minimizing average job completion time.
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CHAPTER 5

Conclusion

As ML transitions from a specialized technology to an integral part of daily life for individ-

uals everywhere, we need to rethink: How should we architect the new generation of ML

systems to meet the evolving needs of pervasive AI? This dissertation proposes a solution for

developing user-centric ML systems [173, 98, 97, 78, 80, 96, 85, 184, 79, 154] through sophis-

ticated resource management, aiming to enhance both end-user experience and server-side

efficiency. This approach goes beyond the singular pursuit of system efficiency to a holistic

paradigm of user-centric system design.

To realize the vision towards pervasive AI, we need to address the challenge including the

diversity of AI workloads—from conversational AI to large-scale training and collaborative

learning—each with unique system demands. Compounding this is the heterogeneity of

computing resources, spanning powerful cloud data centers to resource-constrained edge

devices, and varying user data distributions. My research addresses these challenges by

designing systems grounded in the core principles of user-centricity, workload-awareness,

and synergistic server-client co-design.

This concluding chapter will first offer my perspectives on the overarching trends of AI

and the crucial lessons learned for ML system design (§5.1). Subsequently, I will discuss the

tangible impact of the research presented in this dissertation (§5.2). Finally, I will outline

promising avenues for future work to continue advancing the field of user-centric machine

learning systems (§5.3).

5.1 My Thoughts

5.1.1 The Trend of Pervasive AI

Over the past five years, we have witnessed the rapid expansion of AI from a technology

confined to specialized domains within large corporations and research labs to a tool that

is increasingly integrated into the everyday life of individuals. This shift, accelerated by
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advancements in generative AI models such as ChatGPT, signifies a clear trend: AI is

moving towards ubiquity, poised to become as commonplace in our daily existence as essential

utilities like water, electricity, and the internet. With this trend, it necessitates a rethinking

of its role in people’s life and, consequently, how we design the underlying systems to support

this integration.

Looking forward, the medium through which AI delivers its value to humans will likely

evolve beyond current chat-based interfaces where users proactively submit requests. Two

prominent future mediums emerge.

1. Off-body AI: Physical robots and virtual AI agents designed to proactively complete

complex tasks in the physical or digital world in an autonomous and goal-oriented man-

ner. Their functionalities extend beyond simple command execution to complex rea-

soning, planning, and execution across diverse domains. Imagine an advanced cleaning

robot with the ability to understand spoken commands, sophisticated vision to identify

objects and a dexterous arm to manipulate items.

2. On-body AI: Augmented reality (AR) and virtual reality (VR) running on wearable

devices such as smart glasses. This form of AI would function more like an ever-present,

invisible daily assistant, subconsciously learning user habits and contexts to offer timely

suggestions and support. For instance, in a professional setting, it could understand an

individual’s tasks and provide context for upcoming meetings, summarize discussions,

or even act as a co-pilot in various professions.

To enable these sophisticated off-body and on-body AI experiences, a confluence of ad-

vanced technologies is necessary. These include advanced LLMs for natural language un-

derstanding and high-level planning, multimodal models for perception (e.g., vision, audio

processing), reinforcement learning for dynamic decision-making in complex environments,

and sophisticated control systems for robotic manipulation.

These evolving interaction paradigms not only underscore the future where AI is deeply

and proactively embedded in our daily activities but also directly inspire the future research

directions in ML system design to support such pervasive AI, where I will discuss the un-

derlying challenges and opportunities in §5.3.

5.1.2 Lessons Learned for ML Systems

The evolving landscape of ML underscores the critical role of ML systems, which are essential

for enabling these emerging AI applications. Throughout my research journey, I continually

reflect on the current ML systems landscape, asking:
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• What kind of ML systems research deserve us to dive deeper?

• How do we find promising ML systems problems to solve?

• How should we approach these problems?

Below, I share my thoughts to the questions, hoping they are helpful for future researchers.

Conceptual Stages of ML Systems Innovation. Through my reflection of numerous

ML systems projects, I’ve found three conceptual levels of research:

1. 0→1: This represents the most pioneering research, often best pursued in academic

settings. It involves addressing entirely new ML use cases, applications, or workloads

for which no existing system adequately caters to their unique objectives, resource

constraints, or workload characteristics. The novelty lies in being the first to identify

these distinct system design requirements and to build a foundational solution. For

instance, my work on Venn [97], Curie [78] and Exp-Bench [80] exemplify 0→1 research

by identifying and addressing previously unarticulated system needs for emerging ML

paradigms.

2. 1→2: Once a foundational (0→ 1) system or concept exists, the next critical step is to

enhance its practicality and efficiency. This phase focuses on making the system scal-

able, robust, and more performant. It’s about transforming an initial proof-of-concept

into something that is not just usable but also efficient under realistic conditions. This

stage of research is also valuable and well-suited for doctoral exploration, as it involves

deep thinking and understanding of emerging ML workloads along with underlying

resources to bridge the gap between novel concepts and practical applications. My

contributions such as Andes [98], Fluid [173], and FedScale [85] fall into this category,

building upon foundational ideas to deliver more performant systems capable of han-

dling realistic workloads, and running with advanced resource scheduler and scaling to

heterogeneous resources.

3. 2→ ∞: This level involves the intensive effort required to make an ML system truly

viable for large-scale, real-world industrial deployment. The primary focus here is

on aggressively optimizing efficiency—cutting operational costs, maximizing resource

utilization, and minimizing latency or training time. While critically important for

widespread adoption, this phase often demands substantial engineering resources and

domain-specific expertise, making it particularly well-suited for industry teams who

possess the scale and focused incentives for such deep optimization. This distinction
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is perhaps particularly salient in ML systems, where academia and industry often

collaborate or drive parallel innovations, especially with the rapid, real-world impact

seen in fields like Generative AI. My projects like Auxo [96] and FedTrans [184] further

improve the system and model efficiency via techniques like customized ML model

training based on the underlying compute resources and data characteristics.

Think ahead. Given the rapid pace of innovation in AI, it is crucial to think ahead and

proactively position your research to address future needs. While ML systems play an in-

dispensable role in enabling ML advancements—and can sometimes even drive new ML

capabilities, akin to the ‘hardware lottery’ concept [61]—they often serve a supporting role,

following the advancements of ML models and algorithms. In fast-moving and competitive

areas like Generative AI, where new ideas can quickly reshape the landscape, a reactive ap-

proach can leave research feeling disempowered. Therefore, it’s vital for systems researchers

not only to address current popular ML challenges but also to explore ML technologies and

use cases that are likely to emerge and become significant in the next three to five years, or

even further out. This foresight, as demonstrated by my pivot towards supporting Gener-

ative AI during my PhD, can lead to more impactful and enduring research contributions.

Proactively seeking and integrating insights from industry trends, where possible, can further

sharpen this forward-looking perspective.

Specialized system design. As AI continues to diversify, we encounter an expanding

array of ML use cases, each possessing unique objectives and resource characteristics [173, 97,

98]. These specialized demands present both unique challenges and significant opportunities

for innovation. Therefore, when designing ML systems, it is often necessary to think from

first principles—to challenge existing assumptions and identify the fundamental building

blocks required for a given workload. For instance, my work on Fluid [173] highlighted the

unique requirements of experimental model training, where the primary objective shifts from

minimizing job completion time to optimizing makespan, as comprehensive evaluation across

numerous training jobs is needed to identify optimal configurations. Similarly, Andes [98]

was designed specifically for the emerging demands of AI conversational services, focusing

on user-perceived Quality-of-Experience (QoE) rather than traditional system metrics such

as request throughput. We discuss more challenges and opportunities in Section 5.3.1.
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5.2 Impact

My research has aimed to design machine learning systems that enhance user-centricity and

system efficiency. The impact of this work can be seen in immediate improvements to current

technologies and in laying the groundwork for future advancements.

Elevating User Experience in Generative AI Systems. The way we interact with AI

is undergoing a profound transformation. Before 2025, all LLMs chatbot interfaces presented

text through an inconsistent token stream, often testing user patience with unevenly paced

outputs. My research directly addressed this by aligning system design with user experience

to ensure smooth token delivery at the user perspective, while also minimizing GPU resource

usage particularly under peak load conditions. Therefore, right after 2025, it is gratifying to

observe that a more considered, user-centric approach to token streaming has now become

a widely adopted standard. While such advancements are invariably collaborative, I am

pleased that my work contributed to raising awareness of user experience in Generative AI

systems and making today’s generative AI interfaces significantly more user-friendly and cost

efficient.

Advancing Large-Scale Foundation Model Training During my internship at Meta,

I tackled the challenges inherent in training increasingly massive foundation models. As

the model training scaled to hundreds of thousands of GPUs (the exact number remaining

confidential), issues like fault-tolerance, stragglers, and communication overhead became

critical bottlenecks. I contributed by developing an asynchronous training paradigm and

system. Building on this foundation, a broader team at Meta has worked to productionize

my solution. This work has helped prepare Meta for even larger-scale training scale for

future Llama models, which eventually benefit the broader open-source AI community.

Pioneering Future Directions in Private Machine Learning. My work in private

machine learning is a crucial future investment, addressing persistent data isolation chal-

lenges in sensitive domains like healthcare and banking. Though practical adoption faces

legacy hurdles and requires incentives for collaborative data sharing without compromising

user privacy, my research in this area aims to provide solutions and inspire future work

when the ecosystem matures. Auxo [96], Venn [97], FedScale [85] and FedTrans [184] realize

this vision by providing practical, efficient, and scalable solutions for collaborative learning

that address critical challenges in data heterogeneity, resource management, personaliza-

tion, and multi-job coordination, thereby paving the way for more widespread adoption of

privacy-preserving machine learning techniques.
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5.3 Future Work

Looking ahead, the principles of user-centricity for pervasive AI (§5.1) and the lessons learned

for ML systems research (§5.1.2) guide my vision for future work. The following directions

focus on long-term opportunities that align with the anticipated trends in pervasive ML,

primarily emphasizing foundational (0→1) and practicalization (1→2) research to pioneer

and solidify the next generation of user-centric ML systems.

5.3.1 Advancing User-Centricity and Quality of Experience (QoE)

Across Diverse Modalities

Inspired by the vision of pervasive AI (both off-body and on-body AI) and the proliferation of

multimodal generative models, a primary direction for future work is to extend the principles

of user-centric system design with the concept of Quality of Experience (QoE) as explored

in Andes [98], to a broader spectrum of ML applications and modalities. As AI-driven

generation and understanding of images, audio, and video become increasingly integrated

into daily life, it is crucial to pivot system design objectives to prioritize the user’s direct

experience with these rich media.

Defining and Optimizing Modality-Specific QoE Metrics. Quantifying user experi-

ence for non-textual modalities requires thoughtful design. Future work must first formulate

QoE metrics that align closely with the specific goals of underlying ML applications and the

nuanced expectations of users. (1) On the content quality side, this includes the perceptual

quality of generated images, the temporal coherence and narrative consistency of generated

video, the fidelity of audio synthesis, and the accuracy and relevance of video understanding

outputs—all from a user’s perspective. (2) On the system efficiency side, this translates

to optimizing for interactive responsiveness (e.g., time-to-first-token/image/frame, content

delivery timeline), consistent content delivery across different modalities or transitions be-

tween them, overall system responsiveness under varying loads, and resource efficiency (e.g.,

energy, compute) in meeting target QoE levels.

Based on the defined QoE metrics, systems should ideally adapt QoE goals based on

individual user preferences (e.g., tolerance for artifacts versus speed), task context (e.g.,

rapid prototyping versus final production), or even user expertise level. This necessitates

research into adaptive scheduling algorithms that can dynamically adjust system behavior

and resource allocation to meet these personalized QoE targets.
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Resource Management for Dynamic Generative Workloads. The computational

demands of generative models, especially during interactive use, can be highly variable and

unpredictable. For instance, an on-body AI assisting with visual tasks typically consumes

minimal resources during passive observation. However, its resource demand can spike dra-

matically when the user poses a complex query (e.g., ‘Summarize the key activities in this

busy street market’) about a dynamic and intricate environment. The complexity of both the

environment (e.g., number of objects, rate of change) and the user’s request (e.g., level of de-

tail, reasoning required) directly dictates the necessary computational power for perception,

understanding, and response generation.

Additionally, the memory footprint, computational intensity, and access patterns across

modalities vary significantly (e.g., LLMs versus image diffusion models versus vision en-

coder models), developing specialized system components and resource allocation strategies

tailored to each modality is essential. This includes dynamic memory allocation for large

models, adaptive batching strategies for variable arrival rates, specialized deployment strate-

gies for different modalities, and efficient offloading mechanisms between edge and cloud re-

sources. New resource management techniques and system designs will be needed to deliver

responsive user interaction for such dynamic and resource-intensive generative tasks.

Cross-Modal QoE Synchronization. As applications increasingly blend multiple

modalities (e.g., a robot assistant that visually perceives its environment, verbally plans

its actions, and then physically interacts), ensuring a consistent and high-quality experience

across these interconnected components will be a significant system design challenge. For

instance, a system might need to ensure that visual understanding (e.g., identifying an object

in a user’s view) is tightly synchronized with concurrent auditory cues or interactive elements

(e.g., highlighting the object on an AR display) to provide a seamless and coherent experi-

ence. This requires novel scheduling algorithms that understand inter-modal dependencies

and optimize for a holistic and synchronized QoE.

5.3.2 AI Agents for Self-Evolving ML Systems Design

The emergence of AI agents capable of performing complex tasks autonomously presents a

transformative opportunity, potentially facilitating scientific research and accelerating inno-

vation. My last-year work on building a co-scientist AI agent to help automate research

experimentation and optimize the research solutions- Curie [78] - has shown the potential of

this direction. Key capabilities and research opportunities include:

1. Automated System Design and Optimization: AI agents could be tasked with
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discovering optimal system configurations (i.e., 2→ ∞ research level tasks), such as

the optimal degrees of different parallelisms (e.g., tensor, pipeline, data parallelism)

for training LLMs, navigating vast and complex search spaces more effectively to find

the optimal system configurations that maximize training throughput. Many 2→ ∞
tasks—those requiring significant, detailed engineering effort to squeeze out final per-

centages of performance or cost savings—could potentially be delegated to AI agents.

This would free human researchers and engineers to focus on more foundational 0→1

or 1→2 challenges, accelerating the pace of innovation in ML systems. Beyond 2→ ∞
configuring systems, agents might propose and even implement novel system compo-

nents or designs (contributing to 0→1 and 1→2 research levels). Such agents could

propose innovative architectural components, autonomously adapt systems to evolving

workloads and hardware, contributing to novel scheduling policies, kernel-level opti-

mizations, or advanced strategies for computation-communication overlap.

2. Autonomous Benchmarking, Analysis, and Refinement: An AI agent could be

empowered to deploy system changes, execute over diverse benchmark workloads, col-

lect and analyze performance traces, and iteratively refine its designs based on observed

outcomes, creating a closed loop of continuous system improvement. A fundamental

challenge will be developing ways for AI agents to represent and understand the intri-

cate components, traces, and performance characteristics of complex ML systems.

Achieving this level of autonomous capability requires a new generation of foundation models,

which are imbued with deep, specialized knowledge of ML systems. In addition, reinforce-

ment learning is needed to train agents to master the full lifecycle of ML systems research

experimentation. This necessitates high-quality datasets that capture end-to-end experimen-

tation processes—including hypothesis generation, system implementation, execution, and

analysis—to provide effective training supervision for such agents.

5.3.3 Next-Generation Agentic AI Systems.

As AI agents become capable of tackling increasingly complex and long-running tasks, the

underlying system frameworks must evolve significantly. Current AI agents often rely on

relatively simple sequences of API calls, but future agents will need to perform more so-

phisticated tool use (e.g., dynamically composing software libraries, executing generated

code), interact robustly with physical environments via sensors, manage long-horizon tasks

involving intricate dependencies and error recovery, and strategically leverage heterogeneous

compute resources. This necessitates re-designing agentic AI system frameworks from the

92



ground up to natively support these advanced agentic capabilities. A key focus will be on

creating abstractions that simplify the programming and orchestration of complex agentic

workflows. This includes:

1. Intelligent Resource Management: Agents will decompose high-level goals into

many sub-tasks, each potentially requiring different computational resources (e.g.,

LLM inference, symbolic reasoning, code execution, physical actuators). The frame-

work must provide abstractions to seamlessly dispatch these sub-tasks to appropriate

resources, whether local, cloud-based, or on specialized hardware. To execute complex

plans efficiently, agents will need to perform multiple sub-tasks, which may run in par-

allel or sequentially, often forming a Directed Acyclic Graph (DAG) of operations. The

underlying system must offer intuitive ways to express and manage this parallelism,

handling dependencies, data flow, and synchronization automatically where possible.

Moreover, advanced scheduling are needed for interdependent sub-tasks and underlying

resources to optimize for latency, cost, or other objectives, ensuring robust execution of

long-running, multi-step agentic workflows. Finally, robust checkpointing and fault tol-

erance mechanisms will be essential to ensure the reliable execution of these potentially

long-running and complex multi-step agentic workflows.

2. Self-Evolving Agent Systems: As agentic systems undertake longer-running tasks

and operate in dynamic environments, they should possess the ability to learn and

adapt continuously. The framework should support agents that learn from their past

actions, environmental feedback, and direct human input. This involves integrating

mechanisms akin to reinforcement learning, where agents can refine their policies, im-

prove their planning abilities, and even discover new tools or strategies over time.

Training AI agents that learn complex behaviors and adapt over long periods requires

significant advancements in RL techniques and systems. This includes developing al-

gorithms that are more sample-efficient to learn from limited interaction data, compu-

tationally scalable to handle complex state and action spaces, and capable of effective

reward assignment over extended time horizons. From the systems perspective, this

implies building resource-efficient infrastructure for distributed RL training and data

management for agent experiences.

By tackling these system-level challenges, we can enable the development of more capable,

adaptable, and reliable AI agents that can address complex, real-world problems across a

multitude of domains.
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APPENDIX A

Andes Appendix

A.1 Alternative Scheduling Objectives

In Section 2.4.1, we presented Venn in terms of maximizing the average QoE across all

requests. However, text streaming services can have different quality goals under various

deployment circumstances. More importantly, our defined QoE metric and proposed solution

can be seamlessly adapted to different QoE objectives. In this section, we explore alternative

scheduling objectives.

Maximizing the Minimum QoE. To maximize the minimum QoE across all requests

(i.e., max-min QoE), the gain (item value in knapsack) of request i can be formulated as:

max(Qmin −Qwait,i, 0), (A.1)

where Qmin is the minimum QoE across all requests. This function prioritizes requests that,

if not served within ∆t, would further degrade the minimum QoE. By prioritizing these

urgent requests, the overall QoE floor can be lifted, ensuring a more uniformly satisfying

user experience.

Maximizing the Number of Requests with Perfect QoE. To optimize the number

of requests that achieve perfect QoE, the gain (item value in knapsack) of request i can be

formulated as:

[1(Qserve, i = 1)− 1(Qwait, i = 1)] · 1(Qcurrent,i = 1), (A.2)

where 1(·) is 1 if the given condition is true and 0 otherwise, and Qcurrent,i is the request’s

current QoE. The intuition behind this approach is that (1) there is no point in serving a

request whose QoE is not perfect at the moment, and (2) if a request with currently perfect

QoE will degrade QoE if not served for ∆t, the request must be prioritized.
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Figure A.1: Total context length distribution under different batch sizes using the Multi-
Round ShareGPT dataset.

A.2 Modeling Token Generation Latency

In order to solve our knapsack formulation in Section 2.4.1, we need to be able to anticipate

the QoE of a request after ∆t if served (i.e., Qserve,i), which requires us to know the token

generation latency, which is known to depend on batch size and the total number of tokens

in the batch.

Figure A.1 shows the relationship between the batch size and the total number of tokens

across all requests in the batch (i.e., total context length). It can be seen that batch size

and total context length are nearly perfectly correlated, with Pearson correlation coefficient

being 0.997. Moreover, with the increase of batch size, the total context length is more

predictable as it averages out the variance in individual request context lengths. Therefore,

we can drop total context length and estimate token generation latency simply as a function

of batch size B.

A.3 Dynamic Programming Solution

In Algorithm 5, we give a 3D dynamic programming solution to Equation 2.5. The time

complexity of the algorithm is O(M ·N2) as the largest batch size B is N in the worst case,

and the problem needs to be solved for all feasible batch sizes B to find the optimal set of

requests to serve. We note for clarity that our knapsack problem is weakly NP-Hard and

the 3D DP algorithm is not polynomial time with respect to problem size (number of bits

required to represent the problem). That is, when the problem size (number of bits) is scaled

in terms of the number of requests N by adding more requests, runtime grows quadratically.

However, when the problem is scaled in terms of available memory M by increasing the

number of bits needed to represent M , the value of M and thus algorithm runtime grows

exponentially. Therefore, the solution runs in pseudo-polynomial time, which is effectively

95



exponential time. For more details on weak NP-Hardness and pseudo-polynomial runtime,

we direct the reader to [159].

A.4 Token Pacer In Action
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Figure A.2: The client-side token pacer holds excess tokens sent from the server to absorb
token generation fluctuations and paces token delivery based on the user’s ideal reading
speed.

Figure A.2 visualizes the token pacer in action. With an initial burst generation faster

than the user’s token consumption speed, the pacer withholds excess tokens and paces token

delivery, thus growing in size. Then, the server is aware of the token pacer and the user’s

QoE parameters, so knowing that this request would have sufficient tokens to deliver to the

user for a while, the server preempts the request to serve other requests. While the request

is waiting, the pacer continues to deliver tokens to users at their token consumption speed.

Finally, the server resumes the request at the right timing and starts generating tokens again,

and together with the token pacer, perfect QoE was achieved.

A.5 vLLM Configuration Details

To ensure a fair and optimized comparison, we modified vLLM’s default configuration to

maximize server utilization. By default, vLLM sets relatively conservative values for the

maximum number of batched tokens and sequences, which may leave GPU resources under-

utilized and exacerbate head-of-line blocking under load. We increased these limits to the

maximum values supported by vLLM to better saturate the server and improve throughput.

The non-default configuration parameters used in our evaluation are listed in Table A.1.
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Configuration Value

max-num-batched-tokens 200000
max-num-seqs 512

Table A.1: Non-default vLLM configurations used in evaluation.
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Figure A.3: QoE, TTFT, and TDS CDFs of requests in BurstGPT.

A.6 Zooming In on Real-World Traces

Here, we take a closer look at a one-hour BurstGPT [157] slice from Section 2.6.2 to further

understand the improvements Venn brings.

QoE Improvement. We report the CDF of QoE, TTFT, and TDS across all requests in

Figure A.3. Overall, compared with vLLM using FCFS, Venn improves average QoE from

0.88 to 0.99 and reduces average TTFT from 10.5s to 1.8s. Notably, 97% of requests served

by Venn achieve a QoE of 0.95 or higher, compared to only 75% under vLLM.

QoE improvement without additional resources means that Venn can serve more re-

quests concurrently while maintaining high QoE levels, or conversely, significantly reduce

the amount of GPUs needed to maintain the same level of QoE, directly leading to cost

savings. Venn achieves this while reducing the average TDS of requests only by a marginal

amount: from 11.2 tokens/s to 10.9 tokens/s. The sacrifice is small because Venn – partic-

ularly its preemption overhead-aware refiner – keeps the number of preemptions well under

control, keeping its impact to overall system throughput low.

Significant Queue Length Reduction. To examine the system’s real-time behavior, we

visualize the state of Venn while serving requests in Figure A.4. Visualization of vLLM

serving the same trace can be found in Figure 2.2. We observe that Venn can reduce peak

waiting queue length during serving by a significant 85% through token-level preemptive
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Figure A.4: Venn serving requests from BurstGPT. vLLM serving the same trace is shown
in Figure 2.2. Queue length is significantly reduced under load surges, and GPU memory
utilization is higher.

request scheduling. Furthermore, unlike vLLM, a large portion of the waiting requests in

Venn are those that have been preempted by the scheduler after generating sufficient tokens

for their users, explaining the high average QoE achieved by Venn.

A.7 More Details About Cyclic Burst Load Pattern
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Figure A.5: One cycle of the cyclic burst load pattern.

We introduce the Cyclic Burst Load Pattern to resemble burst patterns in BurstGPT.

Figure A.5 illustrates one cycle of burst in the cyclic burst load pattern. Bursts are character-

ized with two parameters: intensity (ratio of request rate from burst to the entire trace) and

duration (percentage of time the burst takes up in the whole trace). During burst periods,

the request arrival rate significantly exceeds the average, while it drops below the average

in non-burst periods. Request arrivals in both burst and non-burst phases follow the Pois-
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son process, and burst/non-burst periods alternate in a cyclic pattern, which we elaborate

more in Appendix A.7. This cyclic burst pattern mimics the bursty and non-bursty phases

commonly observed in production-level LLM serving environments, offering a controlled yet

representative evaluation of serving system’s performance.

To generate burstiness in the cyclic burst load pattern, we choose the average request

arrival rate r (in requests per second) for each prompt dataset and model pair. The choice

of average request arrival rate r is shown in Table A.2. For TTS service 2.6.4 with a slower

expected TDS, we set the average request arrival rate r to 0.95 requests per second to create

the burstiness.

Model ShareGPT Arxiv Coding

Phi-3-mini 3.8B 1.8 0.28 0.6
Command R 32B 1.8 0.25 0.65

Phi-3.5-MoE 16×3.8B 0.45 2.3 1.1
Llama 3.1 70B 0.8 0.1 0.2

Table A.2: Average request arrival rates (r) for the Cyclic Burst Load Pattern across different
prompt datasets and models.

A.8 More Results on Serving Capacity Gain

We further evaluate the serving capacity improvement of Venn on the Arxiv and Code

dataset. We use the same setup as in Section 2.6.3 and compare Venn with vLLM under

different target QoE levels. We show the results in Table A.3 and Table A.4. For Code

dataset, since the baseline is not able to achieve the target high QoE for all models, we only

report the results for the experiments that achieved the target QoE.

Target
QoE

Phi-3-mini
3.8B

Command R
32B

Phi-3.5-MoE
16×3.8B

Llama
3.1 70B

0.95 1.41× 1.43× 1.15× 1.33×
0.96 1.40× 1.38× 1.12× 1.29×
0.97 1.36× 1.33× 1.09× 1.23×
0.98 1.32× 1.43× 1.05× 1.17×
0.99 1.27× 1.33× 1.14× 1.09×

Table A.3: Venn improves the serving capacity on the Arxiv dataset under different target
QoE compared to vLLM.
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Target
QoE

Phi-3-mini
3.8B

Command R
32B

Phi-3.5-MoE
16×3.8B

Llama
3.1 70B

0.95 1.33× 1.14× 1.43× –
0.96 1.37× – 1.33× –
0.97 1.42× – 1.40× –
0.98 1.47× – 1.50× –
0.99 1.41× – 1.67× –

Table A.4: Venn improves the serving capacity on the Code dataset under different target
QoE compared to vLLM. We only report the results for the experiments that the baseline
can achieve the target QoE.

Algorithm 5 Dynamic programming solution to Equation 2.5

Input:
Number of requests N and KV cache capacity M
Request context length array l[N ]
Request QoE gain array q[N ]
Target batch size B
Output: Solution array x[N ].

1 Initialize dp[N + 1][B + 1][M + 1] with −∞
2 Initialize choice[N + 1][B + 1][M + 1] with 0
3 dp[0][0][0] = 0
4 for i = 1 to N do
5 for b = 0 to min(i, B) do
6 for m = 0 to M do
7 if dp[i][b][m] < dp[i− 1][b][m] then

. Request i is not served.
8 dp[i][b][m] = dp[i− 1][b][m]
9 choice[i][b][m] = 0

10 if b ≥ 1 & m ≥ l[i] then
11 if dp[i− 1][b− 1][m− l[i]] + q[i] > dp[i][b][m] then

. Request i is served.
12 dp[i][b][m] = dp[i− 1][b− 1][m− l[i]] + q[i]
13 choice[i][b][m] = 1

14 Qmax = max(dp[N ][B][:])
15 mcurrent = Index of Qmax in dp[N ][B]
16 bcurrent = B
17 Initialize x[N + 1] with zeros
18 for i = N downto 1 do
19 x[i] = choice[i][bcurrent][mcurrent]
20 if x[i] == 1 then
21 mcurrent = mcurrent − l[i]
22 bcurrent = bcurrent − 1

23 return x[1 :]

100



APPENDIX B

Auxo Appendix

B.1 Proof of Lemma

We first make precise some definitions that are related to the proof from SCAFFOLD and

then see the proof of Lemma.

Assumption 1. gi(w) is unbiased stochastic gradient of fi with bounded variance, where

fi represents the loss function on client i.

Exi [||gi(w)−∇fi(w)||2] ≤ σ2,∀i, x.

where w is the aggregated server model. Note that σ only bounds the variance within

clients not across clients.

Assumption 2. {fi} are β-smooth and satisfy:

||∇fi(w)−∇fi(v)|| ≤ β||w − v||,∀i, w, v.

Assumption 3. fi is µ-convex for µ ≥ 0 and satisfies:

〈∇fi(w), v − w〉 ≤ −(∇fi(w)−∇fi(v) +
µ

2
||w − v||2), ∀i, w, v.

Assumption 4. (G, B)-BGD or Bounded Gradient Similarity: there exist constants G ≥ 0

and B ≥ 1 such that

1

N

N∑
i=1

||∇fi(w)||2 ≤ G2 +B2∇f(w)),∀w.

Theoretical Results
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Lemma 1. If the population and training resources are partitioned into up toK cohorts, to

theoretically achieve better model convergence, intra-cohort heterogeneity should be reduced

by
√
K times when the training resource |P| is larger than α

√
|P0|
J2
0

. α is a constant setting

specified in SCAFFOLD that elaborates the relationship between model convergence and

training resources.

Proof. We first borrow the proof of convergence analysis on FedAvg (Theorem 1) from

SCAFFOLD following the same assumptions mentioned above:

E[f(wR)]− f(w∗) ≤ 3||w0 − w∗||2µe−
η̃
2
R

+η̃(
2σ2

kP
(1 +

P

η2
g

) +
8G2

P
(1− P

N
)) + η̃2(36βG2),

∀ 1

µR
≤ η̃ ≤ 1

8(1 +B2)β

where P denotes the training resources, k is the number local steps, ηl is the local step-size,

ηg is the global step-size and η̃ = kηlηg is the effective step-size

Since we only care about the effect of training resources P and heterogeneity G on the

convergence analysis, we further simplify the right hand side equation to be

h(P,G) =
θ

P
+ γ

G2

P
+ ρG2 + ξ

where θ, γ, ρ and ξ are constant settings. Since we proportionally partition the population

and training resources, we can assume (1− S
N

) to be constant before and after partition.

In order to have no worse model convergence bound after partitioning, we need h(P,G)

to be non-increasing with the reduction of training resources P . As proposed in Lemma 1,

Auxo partitions K cohorts when the intra-cohort heterogeneity can be reduced by
√
K times,

which approximately give G2

P
be constant as the one before partition

G2
0

P0
. By substituting this

relationship into h(P,G), we can derive the lower bound for the range of training resources

required to achieve better convergence bound:

P ≥

√
θP0

G2
0ρ

=

√
σ2

18kη̃2β

P0

G2
0

= α
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APPENDIX C

Venn Appendix

C.1 Detailed Venn Responsibility

Venn delegates responsibilities such as device selection, device fault tolerance, and privacy

protection to individual CLjobs. Device failures are both inevitable and difficult to predict

in CL. Rather than imposing a one-size-fits-all solution, Venn empowers CLjobs to take the

reins on fault tolerance based on their specific workloads and objectives. Therefore, Venn

offloads handling device fault tolerance to CLjobs, who can better detect and react to device

failures (e.g., deciding the amount of overcommit [24]). Similarly, Venn offers CLjobs the

freedom to design their own device selectors [87], where they can incorporate customized

resource criteria into their requests. Venn also does not interfere with job-specific privacy

solutions such as secure aggregation [22, 66] or differential privacy [48, 167].

C.2 ILP Formulation of IRS

We now formulate the IRS that allocates resources to jobs under the constraints with the

objective of minimizing the average scheduling delay. Assume we have devices S = {s1, s2,

..., sq} continuously arriving at times {ti, t2, ..., tq}. There are m jobs J = {J1, J2, ..., Jm} with

their resource demands D = {D1, D2, ..., Dm}. Let eij be a binary variable in the eligibility

matrix, which is set to 1 if device i is eligible to job j, and 0 otherwise. Let xij be a binary

variable of resource allocation, which is 1 if device i is assigned to job j, and 0 otherwise.

We have to follow these constraints during the resource allocation:

m∑
j=1

xij ≤ 1, ∀i ∈ [1, q]
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m∑
j=1

xij × eij ≤ 1,∀i ∈ [1, q]

q∑
i=0

xij = Dj,∀j ∈ [1,m]

Therefore, the scheduling delay of each job is determined by the time it acquires the last

needed device, i.e., Tj = maxi(xij × ti) under these constraints. The overall objective can

then be expressed as:

min

∑m
j=1 Tj

m

mA jobs

Job Group A

mB jobs

Job Group B

>=2GB >=1GB
100 %x %

Resources

(a) Resource supply and demand. There are 100%
devices with memory size ≥ 1GB and x% of the
devices have memory size ≥ 2GB. There are two
job groups where Group A with mA jobs requests
for devices with memory size ≥ 1 GB and Group
B with mB jobs requests for devices with memory
size ≥ 2 GB.

mA jobs

…

mB jobs

…

(b) Step 1: Sort within Job Group.

[2, ∞) GB

[1,2) GB

Time (unit)

x

100

Time (unit)

x

100

l

[2, ∞) GB

[1,2) GB
…

…

…

…

mA jobs

mB jobs

𝛥t<0

𝛥t>0

(c) Step 2: Schedule across Job Groups.

Figure C.1: Venn scheduling algorithm.

C.3 Theoretical Insight to the Heuristic of IRS

Lemma 2. Given a diverse set of CLjobs with one round request, if jobs are scheduled

optimally in terms of the average JCT, first within each job group and then across job groups,
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the resulting average JCT is optimal.

Proof. Let us assume there is an optimal scheduling algorithm that optimizes the average

JCT within each group, and there is an optimal scheduling algorithm which decides how to

merge the job order across job groups to minimize the average JCT. Since the second step

is assumed to provide optimal average JCT based on the previous within group job order,

we only need to prove the global optimal schedule follows the order generated by the within

job group step.

Venn employs smallest remaining job demand first algorithm within each job group. Since

prioritizing jobs with smaller remaining resource demands has been shown to be effective in

similar scheduling problems [138], we skip the proof that the scheduling algorithm within

job group gives the local optimal average JCT for each group.

We prove the rest by contradiction. Assume that there exists an optimal schedule S that

does not follow the order given by each job group. In this assumed optimal schedule S, let

us say there are two jobs JA and JB in the same group such that JA comes after JB, but JA

has fewer resource requirements than JB. Let us swap JA and JB to create a new schedule

S ′. Since JA has fewer resource demand, the average JCT of S ′ will be less than that in

S. This contradicts our original assumption that S is an optimal schedule, as we’ve found

a schedule S ′ with a lower average JCT. Therefore, the assumption is false, and the order

given by each job group (sorted by resource demands) must be part of the optimal schedule.

If we have an optimal scheduling across job groups, the overall average JCT will be optimal.

C.4 Effectiveness of Venn Scheduling Heuristic

To illustrate the effectiveness of Venn’s approach, we start with proving Lemma 3, which

considers a simplified case involving only two job groups with arbitrary resource contention

patterns. Through mathematical proof, we can demonstrate that our algorithm achieves the

optimal solution under this setting.

Lemma 3. Given two job groups with arbitrary resource contention patterns, the scheduling

plan generated by Venn as in Algorithm 3 is capable of minimizing the average scheduling

delay, if a future resource allocation plan is set.

To better prove the Lemma, we introduce a new representation of the scheduling problem

in a more scalable way. Firstly, as depicted in Figure C.1a, we represent the two job groups
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by two distinct sets of squares, where the area of each square corresponds to the size of the

request demand for that job.

Secondly, to visualize the temporal dynamics of resource allocation, we refer to Fig-

ure C.1c. For the sake of this example, let’s assume a constant inflow of 100 devices per

time unit. Within this set, ‘x’ devices possess memory ≥ 2GB, while all 100 devices have

memory ≥ to 1GB. The y-axis is partitioned into two segments: the 0 to ‘x’ range signi-

fies devices with memory exceeding 2GB, and the ‘x’ to 100 range represents devices with

memory ranging between 1GB and 2GB.

Resource allocation over time is illustrated using rectangles, each indicating the job re-

quest to which devices are assigned. For instance, in the right subfigure of Figure C.1c,

devices in the 0 to ‘x’ memory range are allocated to job group B at time 0, while those in

the ‘x’ to 100 range are allocated to job group A. This representation allows us to dynamically

track resource allocation across different jobs over time.

Proof. As shown in Figure C.1a, there are mA requests that ask for devices with 1GB memory

and mB jobs that request devices with 2GB memory, resulting in two job groups A and B.

The devices constantly check-in and execute one CL task, where 100% devices with memory

size ≥ 1GB and x% of the devices have memory size ≥ 2GB. Note that, the proof is not

limited to the contention pattern draw in Figure C.1a, it can be generalized to job group

with intersected resource contention and give the same conclusion.

Based on Algorithm 3, the first step is to sort these jobs within each job group by job

size in ascending order (Figure C.1b). In the second step, we generate an initial resource

allocation for each job group by focusing on the job group with the scarcest resources. This

results in an initial allocation plan that avoids resource sharing across job groups, setting

the stage for subsequent cross-group allocations.

Based on the group-level initial allocation plan (left subfigure in Figure C.1c), we need

to determine the job order across groups, that is, to decide whether to prioritize jobs from

Group A over Group B (right subfigure in Figure C.1c) at current time in order to achieve a

smaller average scheduling delay. In this case, we focus on determining the order of the first

job with size l in Group A and calculate the queuing delay difference (∆t) if we prioritize

the first job from Group A over Group B.

∆t = l ∗m′B − (
l

1− x
− l) ∗m′A

where m′A, m′B represents the number of remaining jobs whose queuing delay may be affected

by this prioritization. Since the future resource allocation is set by the previous initial

allocation or assumed to be given, m′A, m′B are feasible to get. We prioritize the first job
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from Group A only if ∆t < 0, which gives
m′
A

1−x >
m′
B

x
, otherwise we stick with the original

plan. ∆t < 0 is actually the prototype of the scheduling decision as in Algorithm 3 line 12.

By leveraging the conclusion of Lemma 3, Venn can further generalize to the scenario

with more than two job groups with arbitrary resource contention patterns. Specifically,

Venn greedily compares each pair of job groups (Gj, Gk) following the order. For each pair,

Venn applies the logic proven in Lemma 3 to minimize the average scheduling delay between

Gj and Gk.
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